


$\frac{\text{Triangular Solve (STRSM)}}{\text{for } (j = 0; j < n; j ++)} \\ \text{for } (k = 0; k < n; k ++) \\ \text{if } (B[j^*n+k] != 0.0f) { \\ \text{for } (i = k+1; i < n; i ++) \\ B[j^*n+i] -= A[k * n + i] * B[j * n + k]; \\ } \\ \text{Equivalent to:} \\ \text{cublasStrsm}('l' /* \text{ left operator } */, 'l' /* \text{ lower triangular } */, \\ N' /* \text{ not transposed } */, 'u' /* \text{ unit triangular } */, \\ N, N, \text{ alpha, } d_A, N, d_B, N); \\ \text{See: } \frac{\text{http://www.netlib.org/blas/strsm.f}}{13 \text{ POINTOCCR8sStudy III}}$

Approaching Projects/STRSM/Case Studies

- 1. Parallelism?
 - How do dependences constrain partitioning strategies?
- 2. Analyze data accesses for different partitioning $\ensuremath{\mathsf{strategies}}$
 - Start with global memory: coalesced?
 - Consider reuse: within a thread? Within a block?
 Across blocks?
- 3. Data Placement (adjust partitioning strategy?)
 Registers, shared memory, constant memory, texture memory or just leave in global memory
- 4. Tuning

	•	Unrolling,	fine-tune partitioning, floating point, co	ontrol flow,
CS6963			L13: Application Case Study III 6	UNIVERSITY OF UTAH

Step 1. Simple Partition for STRSM

qlobal voi	id strsm1(int n, float *A, float *B)	
{		
int bx = block	xIdx.x;	
int tx = threa	adIdx.x;	
int j = bx*TH independentl	IREADSPERBLOCK + tx; // // one thread per column, colun ly	nns work
int JN = j * n	ι,	
int i, k;		
for (k = 0; k <	< n; ++k) { // ROW	
int KN = k *	n;	
for (i = k+1;	i < n; ++i) { // ALSO row	
// B[i][j] -:	= A[i][k] * B[k][j] element depends on elts in ROWS above	it in same col
B[JN + i]	-= A[KN + i] * B[JN + k];	
}	Slide source: Mark Hall	
} CS6963	L13: Application Case Study III	THE UNIVERSIT

	 Two application case studies 	
	 Molecular Dynamics Visualization Read Kirk and Hwu, Ch. 9 Slide source: John Stone (excerpted) Link: http://www.ks.uiuc.edu/Research/gpu/files/ece498lec 	21-22.pdf
	 Material Point Method Class project in 2009 Read "GPU Acceleration of the Generalized Interpolat Point Method," Wei-Fan Chiang, Michael DeLisi, Todd H Tyler Prete, Kevin Tew, Mary Hall, Phil Wallstedt, and Guilkey, Symposium on Application Accelerators for Hi Performance Computing, July 2009. 	lummel
e col	- Slides from SAAHPC 2009	
IVERSITY	CS6963 L13: Application Case Study III	