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Administrative Issues

* Next assignment, triangular solve
— Due 5PM, Tuesday, March 15
— handin cs6963 lab 3 <probfile>"

* Project proposals

— Due 5PM, Wednesday, March 7 (hard
deadline)

— handin cs6963 prop <pdffile>
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Triangular Solve (STRSM)

for (j=0; j<n j++)
for (k= 0; k < n; k++)
if (B[j*n+k] != 0.0f) {
for (i = k+l; i < n; i++)
B[j*n+i] -= A[k * n+i]* B[j * n+K]
}
Equivalent to:
cublasStrsm('l' /* left operator */,'I' /* lower triangular */,
‘N’ /* not transposed */, 'u' /* unit triangular */,
N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f
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A Few Details

« C stores multi-dimensional arrays in row
major order

* Fortran (and MATLAB) stores multi-
dimensional arrays in column major
order
— Confusion alert: BLAS libraries were

designed for FORTRAN codes, so column
major order is implicit in CUBLAS!
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Dependences in STRSM

for (j=0; j<n; j++)
for (k= 0; k< n; ke+)
if (B[j*n+k] = 0.0f) {
for (i = k+l; i< n; i++)
BLj*n+i]-= Ak * n+i]* B[j * n+ k]

Which loop(s) “carry” dependences?

Which loop(s) is(are) safe to execute in
parallel?
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Assignment

* Details:
— Integrated with simpleCUBLAS test in SDK
— Reference sequential version provided

1. Rewrite in CUDA

2. Compare performance with CUBLAS
library
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Performance Issues?

* + Abundant data reuse
« - Difficult edge cases

» - Different amounts of work for
different <j,k> values

+ - Complex mapping or load imbalance
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Outline

+ Next assignment
+ For your projects:
— "Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU", Lee et al., ISCA 2010.
+ Sparse Linear Algebra
+ Readings:
— “Implementing Sparse Matrix-Vector Multiplication on Throughput Oriented
Processors," Bell and Garland (Nvidia), SCO9, Nov. 2009.

— "Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs", Choi,
Singh, Vuduc, PPoPP 10, Jan. 2010.

— "Optimizing sparse matrix-vector multiply on emerging multicore platforms,”

Journal of Parallel Computing, 35(3):178-194, March 2009. (Expanded from
SCO7 paper.)
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Overview:
CPU and GPU Comparisons

* Many projects will compare speedup
over a sequential CPU implementation
— Ok for this class, but not for a research

contribution

+ Is your CPU implementation as “smart”
as your GPU implementation?

— Parallel?
— Manages memory hierarchy?
— Minimizes synchronization or accesses to
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* Architectures

The Comparison

— Intel i7, quad-core, 3.2G6Hz, 2-way hyper-
threading, SSE, 32KB L1, 256KB L2, 8MB L3
— Same i7 with Nvidia GTX 280

* Workload

— 14 benchmarks, some from the GPU
literature

THE
u UNIVERSITY
OF UTAH

Architectural Comparison
[ lcoreizoe0 _Jexaso |

Number PEs 4 30
Frequency (GHz) 3.2 1.3
Number Transistors 0.7 1.4B
BW (GB/sec) 32 141
SP SIMD width 4 8
DP SIMD width 2 1
Peak SP Scalar 25.6 116.6
FLOPS (GFLOPS)

Peak SP SIMD 102.4 311.1/933.1
Flops (GFLOPS)

Peak DP SIMD 51.2 77.8

Flops (GFLOPS)
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Workload Summary

Rerndl Appiication STV TP Characteristics
SGEMM (SGENIND (48] Tinear algebra Regular Across 2D Tiles Compute bound after (ing
Monte Carlo (MC) [34,9] || Computational Finance Regular “Across paths ‘Compute bound
Comvolution (Conv) (16, 197 Tmage Analysis Regular "Actoss pixels | Compute bound; BW bound for small ilters
FFT (FF1) (17, 21] Signal Processing Regular “Actoss smaller FFTs | Compute/BW bound depending on size
SAXPY (SAXPY) [46] Dot Product Regular “Across vector BW bound for large vectors
LBM (LBM) [32, 45] “Time Migration Regular “Across cells BW bound
‘Constraint Solver (Solv) [14] || Rigid body physics | Gather/Scatter _| _Across constraints Synchronization bound
SpMV (SpMV) 130, 5. 471 Spanse Solver Gather "Across non-zero BW bound for typical Targe matrices
GIK G T Collision Detection Sather/ca "Across objects Compute Bound
Sort (Sort) [15, 39, 40] Database Gather/Scatter Across elements ‘Compute bound
Ray Casting (RC) [43] Volume Rendering Gather “Across rays, Z-8MB first level working set,
over SO0MB st level working set
Search (Scarch) [27] Database Gather/Scatter "Across quenes "Compute bound for small tree, BW
bound at bottom of tree for large tree
Histogram (Hist) [53] Tmage Analysis Requires Across pixels Reduction/synchronization bound

Bilateral (Bilat) [32]

Tmage Analysis

conflict detection

Regular

“Across pixels

Compute Bound
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Performance Results

14.9

Normalized to Core i7
o = N W s U

MC .

Convol M

FFT s

RC pmwm
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GJK I s —

Sort

Bilat [ ———

SpMV
3 Gmean —_—J

Hist

SAXPY
BM
Solv ™

SGEMM s

[Apps__ ][ SGEMM | Mc | Conv | FFT | SAXPY | LBM | Soiv | SpMV | GIK | Sori | RC | Search | Hist | Bilat

Tore 17-960 51 08 | 1250 | 714 | 168 % [ 105 | 49 o7 | 20 | 5 50
46 | 52 04 [ 1020 ] 198 | 81 | o0 | 2583 | 475

364 14 | 3500 [ 213 | 888
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THE
u UNIVERSITY
OF UTAH

CPU optimization

» Tile for cache utilization

SIMD execution on multimedia
extensions

Multi-threaded, beyond number of cores

* Data reorganization to improve SIMD
performance
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Sparse Linear Algebra

+ Suppose you are applying matrix-vector
multiply and the matrix has lots of zero
elements
— Computation cost? Space requirements?

* General sparse matrix representation
concepts

—Primarily only represent the nonzero data
values

— Auxiliary data structures describe
placement of nonzeros in "dense matrix"
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GPU Challenges

» Computation partitioning?
* Memory access patterns?
* Parallel reduction

BUT, good news is that sparse linear
algebra performs TERRIBLY on
conventional architectures, so poor
baseline leads to improvements!
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Some common representations

A= [
*17
data = r28 offsets = [-2 0 1]
539
64~

DIA: Store elements along a set of diagonals.

1700
0280
5039
0604

Compressed Sparse Row (CSR):
Store only nonzero elements, with
“ptr” to beginning of each row and
“indices” representing column.

ptr=  [02479
indices=[011202313]
data= [172853964]

17+ 01>
data = 28+ indices = 12+
539 023
64* 13*

ELL: Store a set of K elements per row and
pad as needed. Best suited when number
non-zeros roughly consistent across rows.

row= [001122233]
indices = [011202313]
data= [172853964]

COO: Store nonzero elements and
their corresponding “coordinates”.
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CSR Example

for (j=0; jenr; j++) {
for (k = ptr[j]; keptr[j+1]-1; k++)
t[j] = t[j] + data[k] * x[indices[K]]

Summary of Re

and Implementation

Bytes/Flop
Kernel  Granularity Coalescing  32-bit  64-bit
DIA thread : row full 4 8
ELL thread : row full 6 10
CSR(s) thread: row rare 6 10
CSR(v) warp : row partial 6 10
c00 thread : nonz  full 8 12
HYB thread : row full 6 10

Table 1 from Bell/Garland: Summary of SpMV kernel

properties.

CS6963
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Other Representation Examples
* Blocked CSR

— Represent non-zeros as a set of blocks, usually of
fixed size

— Within each block, treat as dense and pad block
with zeros

— Block looks like standard matvec
— So performs well for blocks of decent size

* Hybrid ELL and COO
— Find a "K" value that works for most of matrix

— Use COO for rows with more nonzeros (or even
significantly fewer)
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Stencil Example

What is a 3-point stencil? 5-point stencil?
7-point? 9-point? 27-point?

Examples:
a[i] = (b[i-1] + b[i+1])/2;
afi][i] = (b{-1]i] + b{i+1]{] + b{)[-1] + blilli+1])/4;

How is this represented by a sparse
matrix?

. 21 THE
(56963 L11: Sparse Linear Algebra u 8‘;’ {}’TE:‘K_S[[TY

See Figures 11 and 12, Bell and Garland
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Stencil Result
(structured matrices)
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Unstructured Matrices

See Figures 13 and 14

Note that graphs can also be represented
as sparse matrices. What is an
adjacency matrix?

€S6963
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PPoPP paper

What if you customize the
representation to the problem?
Additional global data structure
modifications (like blocked
representation)?

Strategy

— Apply models and autotuning to identify
best solution for each application
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Summary of Results This Lecture
BELLPACK (blocked ELLPACK) achieves up « Exposure to the issues in a sparse
to 29 Gflop/s in SP and 15.7 Gflop/s in matrix vector computation on GPUs
P * A set of implementations and their
expected performance
Up to 1.8x and 1.5x improvement over Bell * A little on how to improve performance
and Garland. through application-specific knowledge

and customization of sparse matrix
representation

Cs6963 2 UN 56963 26 HiR
L11: Sparse Linear Algebra u SR L11: Sparse Linear Algebra u UNIVERSITY

What's coming

* Next time: Application case study from
Kirk and Hwu (Ch. 8, real-time MRI)

* Wednesday, March 2: two guest
speakers from last year's class
— BOTH use sparse matrix representation!

— Shreyas Ramalingam: program analysis on
GPUs

—Pascal Grosset: graph coloring on GPUs
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