
3/18/10 

1 

GPU Acceleration of the Generalized
Interpolation Material Point Method

Wei-Fan Chiang, Michael DeLisi, Todd Hummel,
Tyler Prete, Kevin Tew, Mary Hall, Phil

Wallstedt, and James Guilkey

Sponsored in part by NSF awards CSR‐0615412 
and OCI‐0749360 and by hardware donaCons 
from NVIDIA CorporaCon.  

Outline
•  What is Material Point Method and

Generalized Interpolation Material Point
Method?

•  Suitability for GPU Acceleration
•  Implementation Challenges

– Inverse mapping from grids to particles
(global synchronization)

– I/O in sequential implementation
•  Experimental Results
•  Looking to the future:

– Programming Tools and Auto-tuning
2

Rigid, Soft Body and Fluid Simulations

Tungsten Par,cle Impac,ng sandstone Compac,on of a foam microstructure 

•  Breadth of applications
•  fluids and smoke in games, astrophysics simulaCon, 
oil exploraCon, and molecular dynamics

•  MPM Part of Center for the Simulation of
Accidental Fires and Explosions (C-SAFE)
software environment

3 

2. Overlying mesh defined

1. Lagrangian material points carry all
 state data (position, velocity, stress, etc.)

5. Particle positions/velocities updated from
 mesh solution.

6. Discard deformed mesh.
 Define new mesh and repeat

1

2

3

4

5

The Material Point Method (MPM)

3. Particle state projected to mesh, e.g.:

4. Conservation of momentum solved
 on mesh giving updated mesh velocity
 and (in principal) position.

 Stress at particles computed based
 on gradient of the mesh velocity.

6

vg = Sgpmpvpp∑ Sgpmpp∑

4 

3/18/10 

2 

Approach
•  Start with sequential library

implementation of MPM and GIMP
– And descriptions of parallel OpenMP and MPI

implementations
•  Profiling pinpointed key computations

(updateContribList and advance, >99%)
•  Two independent implementations (2-3

person teams)
•  Some other aspects of mapping

– Makes heavy use of C++ templates
– Gnuplot used for visualization

5 

Key Features of MPM and GIMP
Computation

•  Large amounts of data parallelism
•  Particles mapped to discretized grid

– Compute contribution of particles to grid
nodes (updateContribList)

– Compute <force, velocity, acceleration,
stress> operations on grid nodes (advance)

•  Each time step, the particles are moving
– Compute stresses and recompute mapping

•  Periodically, visualize or store results

6 

Overview of Strategy for CUDA
Implementation

•  Partition particle data structure and
mapping to grid across threads

•  Build an inverse map from grid nodes to
particles
– Requires global synchronization

•  Later phase partitions grid across threads
•  Two implementations differ in strategy for

this inverse map
– V1: Sort grid nodes after every time step
– V2: Replicate inverse map, using extra storage

to avoid hotspots in memory (focus)

7 

__device__ void addParticleToCell(int3 gridPos, uint
index, uint* gridCounters, uint* gridCells)

{
 // calculate grid hash
 uint gridHash = calcGridHash(gridPos);

 // increment cell counter using atomics
 int counter = atomicAdd(&gridCounters[gridHash], 1);
 counter = min(counter, params.maxParticlesPerCell-1);

 // write particle index into this cell (uncoalesced!)
 gridCells[gridHash*params.maxParticlesPerCell +

counter] = index;
}

index refers to index of 
parCcle 

gridPos represents 
grid cell in 3‐d space 

gridCells is data structure  
in global memory for the 
inverse mapping 

What this does: 
Builds up gridCells as array 
limited by max # parCcles per 
grid  
atomicAdd gives how many 
parCcles have already been 
added to this cell 

Global Synchronization for Inverse Map
(CUDA Particle Project)

8 

3/18/10 

3 

Optimized Version:
Replicate gridCounters to avoid Contention

•  Results of this optimization:
– 2x speedup on updateContribList

Ta 

gcx 

Tb  Tc 

gcy  gcz 

atomicAdd 
operaCons 

gridCounter, one elt per grid node 
(global memory) 

Threads compuCng 
Inverse mapping 

Ta 

gcx0 

Tb  Tc 

gcy0  gcz0 

atomicAdd 
operaCons 

replicated gridCounter 
(global memory) 

Threads compuCng 
Inverse mapping 

gcxp  gcyp  gczp gcx1  gcy1  gcz1 

9 

Summary of Other Optimizations

•  Global memory coalescing
–  gridHash and gridCounters organization
– Use of float2 and float4 data types
– CUDA Visual Profiler pinpointed these!

•  Maintain data on GPU across time steps
•  Fuse multiple functions from sequential

code into single, coarser grained GPU
kernel

•  Replace divides by multiples of inverse and
cache

10 

Experiment Details

•  Architectures
–  Original = Intel Core2 Duo E8400 (3.00 GHz)
–  CUDA = nVIDIA GeForce 9600 GT (8 SMs)

•  Input data set

Cell  Grid Nodes  Par,cles 

32 1,352 2,553
64 5,356 9,177
96 12,012 19,897

11 

Results on Key Computations

•  All results use 128 threads
•  Speedups of 12.5x and 6.6x, respectively,

over sequential implementation
12 

3/18/10 

4 

Overall Speedup Results

•  No output, speedup of 10.7x
•  With output, speedup only 3.3x
•  Obvious future work: Open GL for visualization

13 

Shifting Gears:
Programmability and Auto-tuning

•  Midterm extra credit question:
–  “If you could invest in tool research for GPUs,

in what areas would you like to see progress?”
•  Tools

– Assistance with partitioning across threads/
blocks

– Assistance with selecting numbers of threads/
blocks

– Assistance with calculating indexing relative to
thread/block partitioning

14 

Auto-Tuning “Compiler”

Batch
Compiler

code

input data

Traditional view:

Code
Translation

code

input data
(characteristics)

(Semi-)Autotuning Compiler:

search script(s)

transformation
script(s)

Experiments Engine

15 

Current Research Activity

•  Automatically generate CUDA from sequential code
and transformation script, with
CUDAize(loop,TI,TJ,kernnm)

•  Advantages of auto-tuning
–  Tradeoffs between large number of threads to hide

latency and smaller number to increase reuse of data in
registers

–  Detect ordering sensitivities that impact coalescing,
bank conflicts, etc.

–  Evaluate alternative memory hierarchy optimizations
•  Addresses challenges from earlier slide

–  Correct code generation, including indexing
–  Auto-tuning to select best thread/block partitioning
–  Memory hierarchy optimizations and data movement

16 

3/18/10 

5 

Summary

•  Three areas of improvement for MPM/GIMP
– Used single precision, which may not always be

sufficiently precise
– Wanted more threads but constrained by

register limits
– OpenGL visualization of results

•  Newer GPUs and straightforward extensions
ameliorate these challenges

•  Future work on programmability and auto-
tuning

17 

