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Outline 
•  What is Material Point Method and 

Generalized Interpolation Material Point 
Method? 

•  Suitability for GPU Acceleration 
•  Implementation Challenges 

– Inverse mapping from grids to particles 
(global synchronization) 

– I/O in sequential implementation   
•  Experimental Results 
•  Looking to the future:  

– Programming Tools and Auto-tuning 
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Rigid, Soft Body and Fluid Simulations 

Tungsten Par,cle Impac,ng sandstone Compac,on of a foam microstructure 

•  Breadth of applications 
•  fluids and smoke in games, astrophysics simulaCon, 
oil exploraCon, and molecular dynamics 

•  MPM Part of Center for the Simulation of 
Accidental Fires and Explosions (C-SAFE) 
software environment 

3 

2. Overlying mesh defined

1. Lagrangian material points carry all
    state data (position, velocity, stress, etc.)

5. Particle positions/velocities updated from 
    mesh solution.

6. Discard deformed mesh.
    Define new mesh and repeat
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The Material Point Method (MPM) 

3. Particle state projected to mesh, e.g.:

4. Conservation of momentum solved
    on mesh giving updated mesh velocity
    and (in principal) position.

   Stress at particles computed based
    on gradient of the mesh velocity.
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Approach 
•  Start with sequential library 

implementation of MPM and GIMP 
– And descriptions of parallel OpenMP and MPI 

implementations 
•  Profiling pinpointed key computations  

(updateContribList and advance, >99%) 
•  Two independent implementations (2-3 

person teams) 
•  Some other aspects of mapping 

– Makes heavy use of C++ templates 
– Gnuplot used for visualization 
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Key Features of MPM and GIMP 
Computation 

•  Large amounts of data parallelism 
•  Particles mapped to discretized grid 

– Compute contribution of particles to grid 
nodes (updateContribList) 

– Compute <force, velocity, acceleration, 
stress> operations on grid nodes (advance)  

•  Each time step, the particles are moving 
– Compute stresses and recompute mapping  

•  Periodically, visualize or store results 
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Overview of Strategy for CUDA 
Implementation 

•  Partition particle data structure and 
mapping to grid across threads 

•  Build an inverse map from grid nodes to 
particles  
– Requires global synchronization 

•  Later phase partitions grid across threads 
•  Two implementations differ in strategy for 

this inverse map 
– V1: Sort grid nodes after every time step  
– V2: Replicate inverse map, using extra storage 

to avoid hotspots in memory (focus) 
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__device__ void addParticleToCell(int3 gridPos, uint 
index, uint* gridCounters, uint* gridCells) 

{ 
    // calculate grid hash 
    uint gridHash = calcGridHash(gridPos); 

    // increment cell counter using atomics 
   int counter = atomicAdd(&gridCounters[gridHash], 1); 
   counter = min(counter, params.maxParticlesPerCell-1); 

   // write particle index into this cell (uncoalesced!) 
    gridCells[gridHash*params.maxParticlesPerCell + 

counter] = index; 
} 

index refers to index of 
parCcle 

gridPos represents 
grid cell in 3‐d space 

gridCells is data structure  
in global memory for the 
inverse mapping 

What this does: 
Builds up gridCells as array 
limited by max # parCcles per 
grid  
atomicAdd gives how many 
parCcles have already been 
added to this cell 

Global Synchronization for Inverse Map  
(CUDA Particle Project) 
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Optimized Version:  
Replicate gridCounters to avoid Contention 

•  Results of this optimization:  
– 2x speedup on updateContribList 

Ta 

gcx 

Tb  Tc 

gcy  gcz 

atomicAdd 
operaCons 

gridCounter, one elt per grid node 
(global memory) 

Threads compuCng 
Inverse mapping 

Ta 

gcx0 

Tb  Tc 

gcy0  gcz0 

atomicAdd 
operaCons 

replicated gridCounter 
(global memory) 

Threads compuCng 
Inverse mapping 

gcxp  gcyp  gczp gcx1  gcy1  gcz1 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Summary of Other Optimizations 

•  Global memory coalescing 
–  gridHash and gridCounters organization 
– Use of float2 and float4 data types 
– CUDA Visual Profiler pinpointed these! 

•  Maintain data on GPU across time steps  
•  Fuse multiple functions from sequential 

code into single, coarser grained GPU 
kernel 

•  Replace divides by multiples of inverse and 
cache 
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Experiment Details 

•  Architectures 
–  Original = Intel Core2 Duo E8400 (3.00 GHz)  
–  CUDA    = nVIDIA GeForce 9600 GT (8 SMs)  

•  Input data set 

Cell  Grid Nodes  Par,cles 

32 1,352 2,553 
64 5,356 9,177 
96 12,012 19,897 
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Results on Key Computations 

•  All results use 128 threads 
•  Speedups of 12.5x and 6.6x, respectively, 

over sequential implementation  
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Overall Speedup Results 

•  No output, speedup of 10.7x 
•  With output, speedup only 3.3x 
•  Obvious future work: Open GL for visualization 
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Shifting Gears:  
Programmability and Auto-tuning 

•  Midterm extra credit question: 
–  “If you could invest in tool research for GPUs, 

in what areas would you like to see progress?” 
•  Tools 

– Assistance with partitioning across threads/
blocks  

– Assistance with selecting numbers of threads/
blocks 

– Assistance with calculating indexing relative to 
thread/block partitioning 
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Auto-Tuning “Compiler” 

Batch 
Compiler 

code 

input data 

Traditional view: 

Code  
Translation 

code 

input data 
(characteristics) 

(Semi-)Autotuning Compiler: 

search script(s) 

transformation 
script(s) 

Experiments Engine 
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Current Research Activity 

•  Automatically generate CUDA from sequential code 
and transformation script, with 
CUDAize(loop,TI,TJ,kernnm) 

•  Advantages of auto-tuning 
–  Tradeoffs between large number of threads to hide 

latency and smaller number to increase reuse of data in 
registers 

–  Detect ordering sensitivities that impact coalescing, 
bank conflicts, etc. 

–  Evaluate alternative memory hierarchy optimizations  
•  Addresses challenges from earlier slide 

–  Correct code generation, including indexing 
–  Auto-tuning to select best thread/block partitioning 
–  Memory hierarchy optimizations and data movement 
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Summary 

•  Three areas of improvement for MPM/GIMP 
– Used single precision, which may not always be 

sufficiently precise 
– Wanted more threads but constrained by 

register limits 
– OpenGL visualization of results 

•  Newer GPUs and straightforward extensions 
ameliorate these challenges 

•  Future work on programmability and auto-
tuning 
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