
2/22/10

1

L9: Next Assignment,
Project and Floating Point

Issues

CS6963 

Administrative Issues
•  CLASS CANCELLED ON WEDNESDAY!

– I’ll be at SIAM Parallel Processing
Symposium

•  Next assignment, triangular solve
– Due 5PM, Friday, March 5
–  handin cs6963 lab 3 <probfile>”

•  Project proposals (discussed today)
– Due 5PM, Wednesday, March 17 (hard

deadline)
CS6963 

2
L9: Projects and Floa6ng Point 

Outline
•  Triangular solve assignment
•  Project

–  Ideas on how to approach
–  Construct list of questions

•  Floating point
–  Mostly single precision
–  Accuracy
–  What’s fast and what’s not
–  Reading:

 Ch 6 in Kirk and Hwu,
http://courses.ece.illinois.edu/ece498/al/textbook/Chapter6-
FloatingPoint.pdf

 NVIDA CUDA Programmer’s Guide, Appendix B

CS6963 
3

L9: Projects and Floa6ng Point 

Triangular Solve (STRSM)
for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 if (B[j*n+k] != 0.0f) {
 for (i = k+1; i < n; i++)
 B[j*n+i] -= A[k * n + i] * B[j * n + k];
 }

Equivalent to:
cublasStrsm('l' /* left operator */, 'l' /* lower triangular */,
 'N' /* not transposed */, ‘u' /* unit triangular */,
 N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f

4
L9: Projects and Floa6ng Point 

CS6963 

2/22/10

2

Assignment
•  Details:

– Integrated with simpleCUBLAS test in SDK
– Reference sequential version provided

1. Rewrite in CUDA
2. Compare performance with CUBLAS 2.0

library

5
L9: Projects and Floa6ng Point 

CS6963 

Performance Issues?
•  + Abundant data reuse
•  - Difficult edge cases
•  - Different amounts of work for

different <j,k> values
•  - Complex mapping or load imbalance

6
L9: Projects and Floa6ng Point 

CS6963 

Reminder: Outcomes from Last Year’s Course
•  Paper and poster at Symposium on Application Accelerators

for High-Performance Computing
http://saahpc.ncsa.illinois.edu/09/ (May 4, 2010 submission
deadline)

–  Poster:
Assembling Large Mosaics of Electron Microscope Images using GPU -
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, and
Mary Hall

–  Paper:
 GPU Acceleration of the Generalized Interpolation Material Point Method

Wei-Fan Chiang, Michael DeLisi, Todd Hummel, Tyler Prete, Kevin Tew,
Mary Hall, Phil Wallstedt, and James Guilkey

•  Poster at NVIDIA Research Summit
http://www.nvidia.com/object/gpu_tech_conf_research_summit.html
 Poster #47 - Fu, Zhisong, University of Utah (United States)
Solving Eikonal Equations on Triangulated Surface Mesh with CUDA

•  Posters at Industrial Advisory Board meeting
•  Integrated into Masters theses and PhD dissertations
•  Jobs and internships

7
L9: Projects and Floa6ng Point 

CS6963 

Projects
•  2-3 person teams
•  Select project, or I will guide you

–  From your research
–  From previous classes
–  Suggested ideas from faculty, Nvidia (ask me)

•  Example (published):
–  http://saahpc.ncsa.illinois.edu/09/papers/Chiang_paper.pdf

(see prev slide)
•  Steps

1.  Proposal (due Wednesday, March 17)
2.  Design Review (in class, April 5 and 7)
3.  Poster Presentation (last week of classes)
4.  Final Report (due before finals)

8
L9: Projects and Floa6ng Point 

CS6963 

2/22/10

3

1. Project Proposal (due 3/17)
•  Proposal Logistics:

–  Significant implementation, worth 55% of grade
–  Each person turns in the proposal (should be same

as other team members)
•  Proposal:

–  3-4 page document (11pt, single-spaced)
–  Submit with handin program:

 “handin cs6963 prop <pdf-file>”

CS6963 
9

L9: Projects and Floa6ng Point 

Content of Proposal
I.  Team members: Name and a sentence on expertise for each member
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.

-  Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

-  Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV.  Intellectual Challenges
-  Generally, what makes this computation worthy of a project?
-  Point to any difficulties you anticipate at present in achieving high

speedup
CS6963 

10
L9: Projects and Floa6ng Point 

Content of Proposal, cont.
I.  Team members: Name and a sentence on expertise for each member
Obvious
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
Straightforward adaptation from sequential algorithm and/or code
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible

Can measure sequential code

CS6963 
11

L9: Projects and Floa6ng Point 

Content of Proposal, cont.
III.  Suitability for GPU acceleration, cont.

-  Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

Avoid global synchronization
-  Copy Overhead: Discuss the data footprint and anticipated cost of

copying to/from host memory.
Measure input and output data size to discover data footprint. Consider ways to
combine computations to reduce copying overhead.
IV.  Intellectual Challenges

-  Generally, what makes this computation worthy of a project?
Importance of computation, and challenges in partitioning computation, dealing
with scope, managing copying overhead

-  Point to any difficulties you anticipate at present in achieving high
speedup

CS6963 
12

L9: Projects and Floa6ng Point 

2/22/10

4

Projects – How to Approach
•  Some questions:

1.  Amdahl’s Law: target bulk of computation
 and can profile to obtain key computations…

2.  Strategy for gradually adding GPU execution to
CPU code while maintaining correctness

3.  How to partition data & computation to avoid
synchronization?

4.  What types of floating point operations and
accuracy requirements?

5.  How to manage copy overhead?

CS6963 
13

L9: Projects and Floa6ng Point 

1. Amdahl’s Law
•  Significant fraction of overall

computation?
– Simple test:

•  Time execution of computation to be executed
on GPU in sequential program.

•  What is its percentage of program’s total
execution time?

•  Where is sequential code spending most
of its time?
– Use profiling (gprof, pixie, VTUNE, …)

CS6963 
14

L9: Projects and Floa6ng Point 

2. Strategy for Gradual GPU…
•  Looking at MPM/GIMP from last year

– Several core functions used repeatedly
(integrate, interpolate, gradient,
divergence)

– Can we parallelize these individually as a
first step?

– Consider computations and data structures

CS6963 
15

L9: Projects and Floa6ng Point 

3. Synchronization in MPM
Blue dots corresponding to particles (pu).
Grid structure corresponds to nodes (gu).

How to parallelize without incurring
synchronization overhead?

CS6963 
16

L9: Projects and Floa6ng Point 

2/22/10

5

4. Floating Point
•  Most scientific apps are double

precision codes!
•  In general

– Double precision needed for convergence on
fine meshes

– Single precision ok for coarse meshes
•  Conclusion:

– Converting to single precision (float) ok for
this assignment, but hybrid single/double
more desirable in the future

CS6963 
17

L9: Projects and Floa6ng Point 

5. Copy overhead?
•  Some example code in MPM/GIMP

sh.integrate (pch,pch.pm,pch.gm);
sh.integrate (pch,pch.pfe,pch.gfe);
sh.divergence(pch,pch.pVS,pch.gfi);
for(int i=0;i<pch.Nnode();++i)pch.gm[i]+=machTol;
for(int i=0;i<pch.Nnode();++i)pch.ga[i]=(pch.gfe[i]+pch.gfi[i])/

pch.gm[i];
…

Exploit reuse of 
gm, gfe, gfi 

Defer copy back to 
host. 

CS6963 
18

L9: Projects and Floa6ng Point 

Other Project Questions
•  Want to use Tesla System?
•  32 Tesla S1070 boxes

– Each with 4 GPUs
– 16GB memory
– 120 SMs, or 960 cores!

•  Communication across GPUs?
– MPI between hosts

CS6963 
19

L9: Projects and Floa6ng Point 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Brief Discussion of Floating
Point

•  To understand the fundamentals of
floating-point representation
(IEEE-754)

•  GeForce 8800 CUDA Floating-point
speed, accuracy and precision
–  Deviations from IEEE-754
–  Accuracy of device runtime functions
–  -fastmath compiler option
–  Future performance considerations

2/22/10

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

GPU Floating Point Features
G80 SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for
FADD and FMUL

Round to nearest and
round to zero

All 4 IEEE, round to
nearest, zero, inf, -inf Round to nearest only Round to zero/

truncate only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity
support

Yes, only clamps to
max norm Yes Yes No, infinity

Flags No Yes Yes Some

Square root Software only Hardware Software only Software only

Division Software only Hardware Software only Software only

Reciprocal estimate
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy 23 bit No 12 bit No

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

What is IEEE floating-point
format?

•  A floating point binary number consists of three
parts:
–  sign (S), exponent (E), and mantissa (M).
–  Each (S, E, M) pattern uniquely identifies a floating point

number.

•  For each bit pattern, its IEEE floating-point value is
derived as:

–  value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

•  The interpretation of S is simple: S=0 results in a
positive number and S=1 a negative number.

Single Precision vs.
Double Precision

•  Platforms of compute capability 1.2 and below
only support single precision floating point

•  New systems (GTX, 200 series, Tesla) include
double precision, but much slower than single
precision
–  A single dp arithmetic unit shared by all SPs in an

SM
–  Similarly, a single fused multiply-add unit

•  Suggested strategy:
–  Maximize single precision, use double precision only

where needed
CS6963 

23
L9: Projects and Floa6ng Point 

Summary: Accuracy vs.
Performance

•  A few operators are IEEE 754-compliant
–  Addition and Multiplication

•  … but some give up precision, presumably in
favor of speed or hardware simplicity
–  Particularly, division

•  Many built in intrinsics perform common
complex operations very fast

•  Some intrinsics have multiple implementations,
to trade off speed and accuracy
– e.g., intrinsic __sin() (fast but imprecise)

versus sin() (much slower)
CS6963 

24
L9: Projects and Floa6ng Point 

2/22/10

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Deviations from IEEE-754
•  Addition and Multiplication are IEEE 754

compliant
–  Maximum 0.5 ulp (units in the least place) error

•  However, often combined into multiply-add
(FMAD)
–  Intermediate result is truncated

•  Division is non-compliant (2 ulp)
•  Not all rounding modes are supported
•  Denormalized numbers are not supported
•  No mechanism to detect floating-point exceptions

25
L9: Projects and Floa6ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Arithmetic Instruction
Throughput

•  int and float add, shift, min, max and float mul, mad:
4 cycles per warp
–  int multiply (*) is by default 32-bit

•  requires multiple cycles / warp
–  Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit

int multiply

•  Integer divide and modulo are expensive
–  Compiler will convert literal power-of-2 divides to shifts
–  Be explicit in cases where compiler can’t tell that divisor is

a power of 2!
–  Useful trick: foo % n == foo & (n-1) if n is a power of 2

26
L9: Projects and Floa6ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Arithmetic Instruction
Throughput

•  Reciprocal, reciprocal square root, sin/cos,
log, exp: 16 cycles per warp
–  These are the versions prefixed with “__”
–  Examples:__rcp(), __sin(), __exp()

•  Other functions are combinations of the
above
–  y / x == rcp(x) * y == 20 cycles per warp
–  sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp

27
L9: Projects and Floa6ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Runtime Math Library
•  There are two types of runtime math

operations
–  __func(): direct mapping to hardware ISA

•  Fast but low accuracy (see prog. guide for details)
•  Examples: __sin(x), __exp(x), __pow(x,y)

–  func() : compile to multiple instructions
•  Slower but higher accuracy (5 ulp, units in the

least place, or less)
•  Examples: sin(x), exp(x), pow(x,y)

•  The -use_fast_math compiler option
forces every func() to compile to __func()

28
L9: Projects and Floa6ng Point 

2/22/10

8

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign  29 

Make your program float-safe!
•  Future hardware will have double precision support

–  G80 is single-precision only
–  Double precision will have additional performance cost
–  Careless use of double or undeclared types may run more

slowly on G80+
•  Important to be float-safe (be explicit whenever you

want single precision) to avoid using double precision
where it is not needed
–  Add ‘f’ specifier on float literals:

•  foo = bar * 0.123; // double assumed
•  foo = bar * 0.123f; // float explicit

–  Use float version of standard library functions
•  foo = sin(bar); // double assumed
•  foo = sinf(bar); // single precision explicit

29
L9: Projects and Floa6ng Point 

Next Class
•  Reminder: class is cancelled on

Wednesday, Feb. 24
•  Next class is Monday, March 1

– Discuss CUBLAS 2 implementation of
matrix multiply and sample projects

•  Remainder of the semester:
– Focus on applications
– Advanced topics (CUDA->OpenGL,

overlapping computation/communication,
Open CL, Other GPU architectures)

CS6963 
30

L9: Projects and Floa6ng Point 

