2/22/10

L9: Next Assignment,
Project and Floating Point

Administrative Issues

* CLASS CANCELLED ON WEDNESDAY!
—T'll be at STAM Parallel Processing
Symposium
* Next assignment, triangular solve

Issues

— Due 5PM, Friday, March 5
— handin cs6963 lab 3 <probfile>"

* Project proposals (discussed today)
— Due 5PM, Wednesday, March 17 (hard

deadline)
(56963 (56963 L9: Projects ani Floating Point
Outline Triangular Solve (STRSM)
+ Triangular solve assignment f°'"f§i :(koi Jo‘ :1<j;;*)l<++)

+ Floating point

3
CS6963
09 L9: Projects and Floating Point

Project
— Ideas on how to approach
— Construct list of questions

— Mostly single precision

— Accuracy

— What's fast and what's not

— Reading:

Ch 6 in Kirk and Hwu,
http://courses.ece.illinois.edu/ece498/al/textbook/Chapter6-

FloatingPoint.pdf
NVIDA CUDA Programmer’s Guide, Appendix B

THE
u UNIVERSITY
OF UTAH

if (B[j*n+k] != 0.0f) {
for (i = ktl; i < n; i++)
B[j*n+i]-= A[k* n+i]* B[j* n+Kk]
}

Equivalent to:

cublasStrsm('l' /* left operator */, 'I' /* lower triangular */,
'N' /* not transposed */,'u' /* unit triangular */,
N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f

4 THE
(56963 L9: Projects and Floating Point u R




2/22/10

Assignment

+ Details:
— Integrated with simpleCUBLAS test in SDK
— Reference sequential version provided

1. Rewrite in CUDA

2. Compare performance with CUBLAS 2.0
library

. 5
CS6963
09 L9: Projects and Floating Point

THE
U UNIVERSITY
OF UTAH

CS6963

Performance Issues?

+ Abundant data reuse
- Difficult edge cases

- Different amounts of work for
different <j,k> values

- Complex mapping or load imbalance

6 THE
L9: Projects and Floating Point u 8‘:{#}&1“

Reminder: Outcomes from Last Year's Course

+ Paper and poster at Symposium on Application Accelerators
for High-Performance Computing
http://saahpc.ncsa.illinois.edu/09/ (May 4, 2010 submission
deadline)

— Poster:

Assembling Large Mosaics of Electron Microscope Images using GPU -
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, and
Mary Hall

— Paper:
GPU Acceleration of the Generalized Interpolation Material Point Method
Wei-Fan Chiang, Michael DeLisi, Todd Hummel, Tyler Prete, Kevin Tew,
Mary Hall, Phil Wallstedt, and James Guilkey
+ Poster at NVIDIA Research Summit
http://www.nvidia.com/object/gpu_tech_conf_research_summit.html
Poster #47 - Fu, Zhisong, University of Utah (United States)
Solvi ikonal Equations on Triangulated Surface Mesh with CUDA
+ Posters at Industrial Advisory Board meeting
+ Integrated into Masters theses and PhD dissertations
+ Jobs and internships

A 7 "THE
(56963 L9: Projects and Floating Point u SR

CS6963

Projects
2-3 person teams
Select project, or I will guide you
— From your research
— From previous classes
— Suggested ideas from faculty, Nvidia (ask me)
Example (published):

— http://saahpc.nesa.illinois.edu/09/papers/Chiang_paper.pdf
(see prev slide)

Steps

1. Proposal (due Wednesday, March 17)

2. Design Review (in class, April 5 and 7)

3. Poster Presentation (last week of classes)
4. Final Report (due before finals)

8 THE
L9: Projects and Floating Point u 8‘:{#}&1“




2/22/10

1. Project Proposal (due 3/17)

* Proposal Logistics:
— Significant implementation, worth 55% of grade
— Each person turns in the proposal (should be same
as other team members)
* Proposal:
— 3-4 page document (11pt, single-spaced)
— Submit with handin program:
“handin cs6963 prop <pdf-file>"

9 "THE
(56963 L9: Projects and Floating Point u SR

Content of Proposal

I. Team members: Name and a sentence on expertise for each member
II. Problem description
- What is the computation and why is it important?
- Abstraction of computation: equations, graphic or pseudo-code, no more
than 1 page
III. Suitability for GPU acceleration
- Amdahl's Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.
- Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

- Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV. Intellectual Challenges
- Generally, what makes this computation worthy of a project?

- Point to any difficulties you anticipate at present in achieving high
speedup

10 "ThE
(56963 L9: Projects and Floating Point R

Content of Proposal, cont.

I. Team members: Name and a sentence on expertise for each member
Obvious
II. Problem description
- What is the computation and why is it important?
- Abstraction of computation: equations, graphic or pseudo-code, no more
than 1 page
Straightforward adaptation from sequential algorithm and/or code
III. Suitability for GPU acceleration
- Amdahl's Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible
Can measure sequential code

it "THE
(56963 L9: Projects and Floating Point u SR

Content of Proposal, cont.

III. Suitability for GPU acceleration, cont.

- Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

Avoid global synchronization

- Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.
Measure input and output data size to discover data footprint. Consider ways to
combine computations to reduce copying overhead.
IV. Intellectual Challenges
- Generally, what makes this computation worthy of a project?
Importance of computation, and challenges in partitioning computation, dealing
with scope, managing copying overhead
- Point to any difficulties you anticipate at present in achieving high
speedup

12 "ThE
(56963 L9: Projects and Floating Point u R




2/22/10

Projects - How to Approach

* Some questions:
1. Amdahl's Law: target bulk of computation
and can profile to obtain key computations...

2. Strategy for gradually adding GPU execution to
CPU code while maintaining correctness

3. How tfo partition data & computation to avoid
synchronization?

4. What types of floating point operations and
accuracy requirements?

5. How to manage copy overhead?

96 13 "THE
€56963 L9: Projects and Floating Point u gf;’ {}’TE;‘[_E[TY

1. Amdahl's Law

« Significant fraction of overall
computation?
— Simple test:
+ Time execution of computation o be executed
on GPV in sequential program.
* What is its percentage of program’s total
execution time?
* Where is sequential code spending most
of its time?
— Use profiling (gprof, pixie, VTUNE, ...)
14

"ThE
56963 L9: Projects and Floating Point u 8‘;’ [UVH‘FS(ITY

2. Strategy for Gradual GPU...

* Looking at MPM/GIMP from last year

— Several core functions used repeatedly
(integrate, interpolate, gradient,
divergence)

— Can we parallelize these individually as a
first step?

— Consider computations and data structures

- 15 THE
€56963 L9: Projects and Floating Point u gf;’ {}’TE;‘[_E[TY

3. Synchronization in MPM

Blue dots corresponding to particles (pu).
Grid structure corresponds to nodes (gu).

'Kl
/v

How to parallelize without incurring
synchronization overhead?

16 THE
56963 L9: Projects and Floating Point u 8‘;’ [UVH‘FS(ITY




2/22/10

€S6963

4. Floating Point

* Most scientific apps are double
precision codes!

* Ingeneral

— Double precision needed for convergence on
fine meshes

— Single precision ok for coarse meshes
+ Conclusion:

— Converting to single precision (float) ok for
this assignment, but hybrid single/double
more desirable in the future

1
L9: Projects and Floating Point

THE
u UNIVERSITY
OF UTAH

5. Copy overhead?

*+ Some example code in MPM/GIMP
sh.integrate (pch,pch.pm,pch.gm);

sh.integrate (pch,pch.pfe pch.gfe):
sh.divergence(pch,pch.pVS pch.gfi):

for(int i=0;i<pch.Nnode();++i)pch.gm[iJ+=machTol; E

for(int i=0;i<pch.Nnode();++i)pch.galil=(pch.gfe[il+pch.gfi[i1)/
pch.gm[il;

18
€56963
L9: Projects and Floating Point

THE
u UNIVERSITY
OF UTAH

€S6963

Other Project Questions

Want to use Tesla System?
32 Tesla S1070 boxes

— Each with 4 GPUs

—16GB memory

— 120 SMs, or 960 cores!
Communication across GPUs?
— MPI between hosts

THE
u UNIVERSITY
OF UTAH

L9: Projects and Floating Point

Brief Discussion of Floating
Point

+ To understand the fundamentals of
floating-point representation
(IEEE-754)

* GeForce 8800 CUDA Floating-point
speed, accuracy and precision
— Deviations from IEEE-754
— Accuracy of device runtime functions
— -fastmath compiler option
— Future performance considerations

THE
u UNIVERSITY
OF UTAH




2/22/10

GPU Floating Point Features What is TEEE floating-point

IBM Altivec Cell SPE f 1.9
Precision IEEE 754 IEEE 754 1EEE 754 1EEE 754 o r‘ ma .
Rounding modes for ~ Round to nearestand ~ All 4 IEEE, round to Round to zero/ . . . .
FADD and FMUL  round to 210 nerest, zero, nf nf ROUM 10 nearestonly L * A floating point binary number consists of three
Denormal handling  Flush to zero Supported, Supported, Flush to zero parts:

1000’s of cycles 1000’ of cycles . .
N . v . v N — sign (S), exponent (E), and mantissa (M).
NaN suppor es es es o - o0 ) )
— Each (S, E, M) pattern uniquely identifies a floating point

Overflow and Infinity ~ Yes, only clampsto y Yes No, infinity number-.
support max norm
Flags No Yes Yes Some

i i + For each bit pattern, its IEEE floating-point value is
Square root Software only Hardware Software only Software only .

derived as:

Division Software only Hardware Software only Software only

Reciprocal estimate

accuracy 24 bit 12 bit 12 bit 12 bit — value = (-1)5* M * {2€}, where 1.0 < M < 10.04
Regprocal sqrt 23 bit 12 bit 12 bit 12 bit
estimate accuracy

log2(x) and 2°x
estimates accuracy

i o bt o * The interpretation of S is simple: 5=0 results ina

positive number and S=1 a negative number.
UUNIVERSIT‘{ u UNIVERSITY
OF UTAH OF UTAH

Single Precision vs. Summary: Accuracy vs.
Double Precision Performance

* Platforms of compute capability 1.2 and below * A few operators are IEEE 754-compliant
only support single precision floating point - Addition and Multiplication '

+ New systems (6TX, 200 series, Tesla) include * .. but some give up precision, presumably in
double precision, but much slower than single favor of speed or hardware simplicity
precision — Particularly, division
— A single dp arithmetic unit shared by all SPs in an  Many built in intrinsics perform common

SM complex operations very fast
— Similarly, a single fused multiply-add unit + Some infrinsics have multiple implementations,

+ Suggested strategy: to trade off speed and accuracy
— Maximize single precision, use double precision only —e.g., intrinsic __sin() (fast but imprecise)

where needed versus sin() (much slower)




2/22/10

Deviations from IEEE-754

Addition and Multiplication are IEEE 754
compliant

— Maximum 0.5 ulp (units in the least place) error
Howeve)r‘, often combined into multiply-add

(FMAD

— Intermediate result is truncated

Division is non-compliant (2 ulp)

Not all rounding modes are supported
Denormalized numbers are not supported

No mechanism to detect floating-point exceptions

25 THE
L9: Projects and Floating Point u 813 ll}/‘l'EARl»S[[TY

Arithmetic Instruction
Throughput

int and float add, shift, min, max and float mul, mad:
4 cycles per warp
— int multiply (*) is by default 32-bit
 requires multiple cycles / warp
— Use _mul24() / __umul24() intrinsics for 4-cycle 24-bit
int multiply

Integer divide and modulo are expensive

- Compiler will convert literal power-of-2 divides to shifts

— Be explicit in cases where compiler can't tell that divisor is
a power of 2!

— Useful trick: foo % n == foo & (n-1) if n is a power of 2

26 THE
L9: Projects and Floating Point u 8‘:%_5;1}5(1“

Arithmetic Instruction
Throughput
 Reciprocal, reciprocal square root, sin/cos,
log, exp: 16 cycles per warp
— These are the versions prefixed with *__
— Examples:__rcp(), __sin(), _exp()

"

+ Other functions are combinations of the
above
— y/ x==rcp(x) * y == 20 cycles per warp
— sqrt(x) == rcp(rsqri(x)) == 32 cycles per warp

27 THE
L9: Projects and Floating Point u UNIVERSITY
OF UTAH

Runtime Math Library

There are two types of runtime math
operations
— __func(): direct mapping to hardware ISA
+ Fast but low accuracy (see prog. guide for details)
+ Examples: __sin(x), _exp(x), __pow(x,y)
— func() : compile to multiple instructions

+ Slower but higher accuracy (5 ulp, units in the
least place, or less)

+ Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option
forces every func() to compile o __func()

28 THE
L9: Projects and Floating Point u 8‘:%_5;1}5(1“




2/22/10

Make your program float-safel

Future hardware will have double precision support

— 680 is single-precision only

— Double precision will have additional performance cost

— Careless use of double or undeclared types may run more
slowly on 680+

Important to be float-safe (be explicit whenever you

want single precision) to avoid using double precision

where itis not needed

— Add 'f' specifier on floaft literals:
. ) bar * 0. // double

) = * 0.123f; // float explicit

assumed

— Use float version of standard library functions

1 (X ) ; // double a e

sinf (bar); // single p sion explici

29 THE
L9: Projects and Floating Point u 8[: l‘}/TE;lgITY

€56963

Next Class

Reminder: class is cancelled on

Wednesday, Feb. 24

Next class is Monday, March 1

— Discuss CUBLAS 2 implementation of
matrix multiply and sample projects

Remainder of the semester:

— Focus on applications

— Advanced topics (CUDA->OpenGL,

overlapping computation/communication,
Open CL, Other GPU architectures)

30 THE
L9: Projects and Floating Point u gf:bv_ﬂlrS(ITY




