
2/17/10

1

L8: Control Flow

CS6963 

Administrative

•  Next assignment on the website
– Description at end of class
– Due Wednesday, Feb. 17, 5PM (done?)
– Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s10-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s10-teach@list.eng.utah.edu
•  Please use for questions to Protonu and me

CS6963 
2

L8: Control Flow 

Administrative

•  Grad lab, Linux machines:
arctic.cs.utah.edu arctic
gbasin.cs.utah.edu gbasin
redrock.cs.utah.edu redrock
gobi.cs.utah.edu gobi
sahara.cs.utah.edu sahara
mojave.cs.utah.edu mojave

3

L8: Control Flow 

Outline
•  Recall SIMD Execution Model

–  Impact of control flow
•  Improving Control Flow Performance

–  Organize computation into warps with same control
flow path

–  Avoid control flow by modifying computation
–  Tests for aggregate behavior (warp voting)

•  Read (a little) about this:
 Kirk and Hwu, Ch. 5
 NVDIA Programming Guide, 5.4.2 and B.11
 http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=1

4

L8: Control Flow 

CS6963 

2/17/10

2

A Very Simple Execution Model

•  No branch prediction
– Just evaluate branch targets and wait for

resolution
– But wait is only a small number of cycles

once data is loaded from global memory
•  No speculation

– Only execute useful instructions

5

L8: Control Flow 

CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc7on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  compare
threadIdx,2

6

L8: Control Flow 

CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2) {
 out[threadIdx.x] += 100;
}
else {
 out[threadIdx.x] += 10;
}

P0 
Instruc7on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

/* Condition code cc =
true branch set by
predicate execution */
(CC) LD R5,
 &(out+threadIdx.x)
(CC) ADD R5, R5, 100
(CC) ST R5,
 &(out+threadIdx.x)

X X ✔ ✔

7

L8: Control Flow 

CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc7on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

/* possibly predicated
using CC */
(not CC) LD R5,
 &(out+threadIdx)
(not CC) ADD R5, R5, 10
(not CC) ST R5,
 &(out+threadIdx)

✔ ✔ X X

8

L8: Control Flow 

CS6963 

2/17/10

3

Terminology

•  Divergent paths
– Different threads within a warp take

different control flow paths within a kernel
function

– N divergent paths in a warp?
•  An N-way divergent warp is serially issued over

the N different paths using a hardware stack
and per-thread predication logic to only write
back results from the threads taking each
divergent path.

•  Performance decreases by about a factor of N
9

L8: Control Flow 
CS6963 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How thread blocks are partitioned

•  Thread blocks are partitioned into warps
–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from

generation to generation
–  (Covered next)

•  However, DO NOT rely on any ordering between
warps
–  If there are any dependences between threads, you must

__syncthreads() to get correct results
10

L8: Control Flow 

First Level of Defense:
Avoid Control Flow

•  Clever example from MPM

•  No need to test for divide by 0 error,
and slight delta does not impact results

mi = Sipmpp∑ +1.0x10−100

Vi =
SipmpVpp∑
mi

Add small constant 
to mass so that  

velocity calcula7on 
never divides by zero 

11

L8: Control Flow 

CS6963 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Control Flow Instructions

•  A common case: avoid divergence when branch
condition is a function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a

block
•  Branch granularity < warp size; threads 0 and 1 follow

different path than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a

block
•  Branch granularity is a whole multiple of warp size; all threads

in any given warp follow the same path

12

L8: Control Flow 

2/17/10

4

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A Vector Parallel Reduction Example
(related to “count 6” example

•  Assume an in-place reduction using
shared memory
– The original vector is in device global

memory
– The shared memory is used to hold a partial

sum vector
– Each iteration brings the partial sum vector

closer to the final sum
– The final solution will be in element 0

13

L8: Control Flow 

How to Accumulate Result in Shared
Memory

In original implementation (Lecture 1), we collected per-thread
results into d_out[threadIdx.x].

In updated implementation (Lecture 3), we collected per-block results
into d_out[0] for a single block, thus serializing the accumulation
computation on the GPU.

Suppose we want to exploit some parallelism in this accumulation part,
which will be particularly important to performance as we scale the
number of threads.

A common idiom for reduction computations is to use a tree-
structured results-gathering phase, where independent threads
collect their results in parallel. Assume SIZE=16 and
BLOCKSIZE(elements computed per thread)=4.

CS6963 
14

L8: Control Flow 

Recall: Serialized Gathering of Results on
GPU for “Count 6”

__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

 __syncthreads(); 
   if (threadIdx.x == 0) { 
     for 0..BLOCKSIZE‐1 

     *d_sum += d_out[i];         
   } 

15 
L8: Control Flow 

Tree-Structured Computation

out[0] += out[2]

out[0] += out[1] out[2] += out[3]

out[0] out[1] out[2] out[3]

Tree-structured results-gathering phase, where independent threads collect their
results in parallel.

Assume SIZE=16 and BLOCKSIZE(elements computed per thread)=4.

CS6963 

2/17/10

5

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A possible implementation for just the
reduction

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];

}

17

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Vector Reduction with Branch
Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements
iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

18

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Some Observations
•  In each iteration, two control flow paths will be

sequentially traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition may cost extra cycles

depending on the implementation of divergence
•  No more than half of threads will be executing at any

time
–  All odd index threads are disabled right from the beginning!
–  On average, less than ¼ of the threads will be activated for

all warps over time.
–  After the 5th iteration, entire warps in each block will be

disabled, poor resource utilization but no divergence.
•  This can go on for a while, up to 4 more iterations (512/32=16=

24), where each iteration only has one thread activated until all
warps retire

19

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

What’s Wrong?

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];

}

20

L8: Control Flow 

BAD: Divergence
due to interleaved
branch decisions

2/17/10

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A better implementation

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 d_out[t] += d_out[t+stride];

}

21

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Thread 0
No Divergence until < 16 sub-sums

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31 1

3

4

22

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A shared memory implementation

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 partialSum[t] += partialSum[t+stride];

}

23

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Some Observations About the New
Implementation

•  Only the last 5 iterations will have
divergence

•  Entire warps will be shut down as
iterations progress
– For a 512-thread block, 4 iterations to shut

down all but one warp in each block
– Better resource utilization, will likely retire

warps and thus blocks faster
•  Recall, no bank conflicts either

24

L8: Control Flow 

2/17/10

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Predicated Execution Concept

<p1> LDR r1,r2,0

•  If p1 is TRUE, instruction executes normally

•  If p1 is FALSE, instruction treated as NOP

25

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Predication Example

:
:

if (x == 10)

 c = c + 1;

:

:

 :

 :

 LDR r5, X
 p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

 :
 :

26

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

B

A

C

D

A
B
C
D

Predication can be very helpful for
if-else

27

L8: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

If-else example

 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p1> inst 2 from B

<p1> :

 :

<p2> inst 1 from C
<p2> inst 2 from C

 :

 :

 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p2> inst 1 from C

<p1> inst 2 from B

<p2> inst 2 from C

<p1> :

 :

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

28

L8: Control Flow 

2/17/10

8

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Instruction Predication in G80

•  Comparison instructions set condition codes (CC)
•  Instructions can be predicated to write results only when CC

meets criterion (CC != 0, CC >= 0, etc.)

•  Compiler tries to predict if a branch condition is likely to
produce many divergent warps
–  If guaranteed not to diverge: only predicates if < 4 instructions
–  If not guaranteed: only predicates if < 7 instructions

•  May replace branches with instruction predication

•  ALL predicated instructions take execution cycles
–  Those with false conditions don’t write their output

•  Or invoke memory loads and stores
–  Saves branch instructions, so can be cheaper than serializing

divergent paths (for small # instructions)
29

L8: Control Flow 

Warp Vote Functions
(Compute Capability > 1.2)

•  Can test whether condition on all threads
in a warp evaluates to same value
int __all(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for all of them.
int __any(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for any of them.

30

L8: Control Flow 

CS6963 

Using Warp Vote Functions

•  Can tailor code for when none/all take a
branch.

•  Eliminate overhead of branching and
predication.

•  Particularly useful for codes where
most threads will be the same
– Example 1: looking for something unusual in

image data
– Example 2: dealing with boundary conditions

31

L8: Control Flow 

CS6963 

Summary of Lecture

•  Impact of control flow on performance
–  Due to SIMD execution model for threads

•  Execution model/code generated
–  Stall based on CC value (for long instr sequences)
–  Predicated code (for short instr sequences)

•  Strategies for avoiding control flow
–  Eliminate divide by zero test (MPM)
–  Warp vote function

•  Group together similar control flow paths into warps
–  Example: “tree” reduction

32

L8: Control Flow 

CS6963 

2/17/10

9

Next Time

•  Semester project description
•  Two assignments

– Next programming assignment
– Project proposal

33

L8: Control Flow 

