
2/17/10

1

L7: Memory Hierarchy Optimization IV,
Bandwidth Optimization and Case Studies

CS6963 

Administrative

•  Next assignment on the website
– Description at end of class
– Due Wednesday, Feb. 17, 5PM
– Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s10-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s10-teach@list.eng.utah.edu
•  Please use for questions to Protonu and me

CS6963 
2

L7: Memory Hierarchy IV 

Administrative, cont.

•  New Linux Grad Lab on-line!
– 6 machines up and running
– All machines have the GTX260 graphics

cards, Intel Core i7 CPU 920 (quad-core
2.67GHz) and 6Gb of 1600MHz (DDR) RAM.

3
L7: Memory Hierarchy IV 

CS6963 

Overview

•  Complete discussion of data placement in registers and texture
memory

•  Introduction to memory system
•  Bandwidth optimization

•  Global memory coalescing
•  Avoiding shared memory bank conflicts
•  A few words on alignment

•  Reading:
–  Chapter 4, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter4-

CudaMemoryModel.pdf
–  Chapter 5, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter5-

CudaPerformance.pdf
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth

optimizations) of NVIDIA CUDA Programming Guide

CS6963 
4

L7: Memory Hierarchy IV 

2/17/10

2

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
5

L7: Memory Hierarchy IV 

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 
6

L7: Memory Hierarchy IV 

Bandwidth to Shared Memory:
Parallel Memory Accesses

•  Consider each thread accessing a
different location in shared memory

•  Bandwidth maximized if each one is able
to proceed in parallel

•  Hardware to support this
– Banked memory: each bank can support an

access on every memory cycle

CS6963 
7

L7: Memory Hierarchy IV 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits
per clock cycle

•  Successive 32-bit words are assigned to
successive banks

•  G80 has 16 banks
–  So bank = address % 16
–  Same as the size of a half-warp

•  No bank conflicts between different half-
warps, only within a single half-warp

8
L7: Memory Hierarchy IV 

2/17/10

3

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
–  If all threads of a half-warp access different banks, there

is no bank conflict
–  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)
•  The slow case:

–  Bank Conflict: multiple threads in the same half-warp
access the same bank

–  Must serialize the accesses
–  Cost = max # of simultaneous accesses to a single bank

9
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  No Bank Conflicts
–  Linear addressing

stride == 1

•  No Bank Conflicts
–  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

10
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

11
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Linear Addressing
•  Given:
__shared__ float shared[256];
float foo =

 shared[baseIndex + s *
threadIdx.x];

•  This is only bank-conflict-
free if s shares no common
factors with the number of
banks
–  16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

12
L7: Memory Hierarchy IV 

2/17/10

4

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Data types and bank conflicts
•  This has no conflicts if type of shared is 32-

bits:
foo = shared[baseIndex + threadIdx.x]

•  But not if the data type is smaller
–  4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

–  2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

13
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Structs and Bank Conflicts
•  Struct assignments compile into as many memory accesses as

there are struct members:

struct vector { float x, y, z; };
struct myType {
 float f;
 int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

•  This has no bank conflicts for vector; struct size is 3 words
–  3 accesses per thread, contiguous banks (no common factor with

16)

struct vector v = vectors[baseIndex + threadIdx.x];

•  This has 2-way bank conflicts for my Type; (2 accesses per
thread)

struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

14
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Common Bank Conflict Patterns, 1D Array

•  Each thread loads 2 elements into
shared mem:
–  2-way-interleaved loads result in

2-way bank conflicts:
int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];
•  This makes sense for traditional

CPU threads, exploits spatial
locality in cache line and reduces
sharing traffic
–  Not in shared memory usage where

there is no cache line effects but
banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

15
L7: Memory Hierarchy IV 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A Better Array Access Pattern
•  Each thread loads one

element in every
consecutive group of
blockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] =
global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

16
L7: Memory Hierarchy IV 

2/17/10

5

What Can You Do to Improve Bandwidth
to Shared Memory?

•  Think about memory access patterns
across threads
– May need a different computation & data

partitioning
– Sometimes “padding” can be used on a

dimension to align accesses

17
L7: Memory Hierarchy IV 

CS6963 

A Running Example: 2-D Jacobi Relaxation

•  A “stencil” computation
– Output for a point depends on neighboring

points from input
– A common pattern in scientific computing

and image/signal processing (Sobel)

for (i=1; i<n; i++)
 for (j=1; j<n; j++)
 b[i][j] = 0.5*(a[i+1][j] + a[i-1][j] + a[i][j+1] + a[i][j-1]);

18
L7: Memory Hierarchy IV 

CS6963 

How to Map Jacobi to GPU (Tiling)

for (i=1; i<n; i++)
 for (j=1; j<n; j++)
 b[i][j] = 0.5*(a[i+1][j] + a[i-1][j] + a[i][j+1] + a[i][j-1]);

TILED SEQUENTIAL CODE
// For clarity, assume n is evenly divisible by TX and TY
for (i=1; i<(n/TX); i++) // MAP TO blockIdx.x
 for (j=1; j<(n/TY); j++) // MAP TO blockIdx.y
 for (x=0; x<TX; x++) // MAP TO threadIdx.x
 for (y=0; y<TY; y++) // Possibly, MAP TO threadIdx.y
 b[TX*i+x][TY*j+y] = 0.5*(a[TX*i+x+2][TY*j+y+1] +
 a[TX*i+x][TY*j+y+1] +
 a[TX*i+x+1][TY*j+y+2] +
 a[TX*i+x+1][TY*j+y]);

CS6963 
19

L7: Memory Hierarchy IV 

Global Memory Accesses

•  Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

•  Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

•  Maximizing bandwidth:
– Operate on an entire 128 byte segment for

each memory transfer

20
L7: Memory Hierarchy IV 

CS6963 

2/17/10

6

// GPU Kernel Code
extern __global__ void Jacobi_GPU(float *b, float *a)
 {
 int t2;
 int t4;
 int t6;
 int t10;

 t2 = blockIdx.x;
 t4 = blockIdx.y;
 t6 = threadIdx.x;
 t8 = threadIdx.y;

 // make sure we don’t go off end
 b[TX*t2+t6][TY*t4+t8] = 0.5*(a[TX*t2+t6+2][TY*t4+t8+1] +
 a[TX*t2+t6][TY*t4+t8+1] +
 a[TX*t2+t6+1][TY*t4+t8+2] +
 a[TX*t2+t6+1][TY*t4+t8]);
 }

Automatically Generated Code

// Assume size 8192x8192 for b
dim3 dimGrid(8192/TX,8192/TY)
dim3 dimBlock(TX,TY)

CS6963 
21

L7: Memory Hierarchy IV 

// GPU Kernel Code
extern __global__ void Jacobi_GPU(float *b, float *a)
 {
 int t2;
 int t4;
 int t6;
 int t10;

 t2 = blockIdx.x;
 t4 = blockIdx.y;
 t6 = threadIdx.x;

 for (t8=0; t8<TY; t8++)
 // make sure we don’t go off end
 b[TX*t2+t6][TY*t4+t8] = 0.5*(a[TX*t2+t6+2][TY*t4+t8+1] +
 a[TX*t2+t6][TY*t4+t8+1] +
 a[TX*t2+t6+1][TY*t4+t8+2] +
 a[TX*t2+t6+1][TY*t4+t8]);
 }

Slightly Different
Automatically Generated Code

// Assume size 8192x8192 for b
dim3 dimGrid(8192/TX,8192)
dim3 dimBlock(TX)

CS6963 
22

L7: Memory Hierarchy IV 

texture<float, 1,
cudaReadModeElementType> texRef;
// GPU Kernel Code
__global__ void jacobi_GPU(float *a[], float*
b)
{

 int thidx = SBX * blockIdx.y ;
 int thidy = threadIdx.x + SBY *

blockIdx.x;

 if(thidy > 0 && thidy < (N-1))
 for(int j= 0 ; j< SBX ;j++){
 if (thidx > 0 && thidx < (N-1))
 b[(thidx-1)*(N-2) + (thidy-1)] =

0.5* (tex1Dfetch(texRef,(thidx+1)*N + thidy)
+ tex1Dfetch(texRef,(thidx-1)*N + thidy) +
tex1Dfetch(texRef,thidx*N + (thidy+1)) +
tex1Dfetch(texRef,(thidx)*N + (thidy-1)));

 thidx++;
 }//end for

}

Slightly Different Code –
Using Texture Memory

2/17/10

7

From 2-D Jacobi Example

•  Use of tiling just for computation
partitioning to GPU

•  Factor of 2 difference due to
coalescing, even for identical layout and
just differences in partitioning

•  Texture memory improves performance

26
L7: Memory Hierarchy IV 

CS6963 

Matrix Transpose (from SDK)
_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

 // read the matrix tile into shared memory
 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 unsigned int index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];

 __syncthreads();

 // write the transposed matrix tile to global memory
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 unsigned int index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
}

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 
27

L7: Memory Hierarchy IV 

How to Get Compiler Feedback

How many registers and shared memory does my code
use?

$ nvcc --ptxas-options=-v \
-I/Developer/CUDA/common/inc \
-L/Developer/CUDA/lib mmul.cu -lcutil

Returns:
ptxas info : Compiling entry function

'__globfunc__Z12mmul_computePfS_S_i'
ptxas info : Used 9 registers, 2080+1056 bytes smem,

8 bytes cmem[1]
CS6963 

28
L7: Memory Hierarchy IV 

2/17/10

8

CUDA Profiler

•  What it does:
– Provide access to hardware performance

monitors
– Pinpoint performance issues and compare

across implementations
•  Two interfaces:

– Text-based:
•  Built-in and included with compiler

– GUI:
•  Download from
http://www.nvidia.com/object/cuda_programming_tools.html

CS6963 
29

L7: Memory Hierarchy IV 

Example
•  Reverse array from Dr. Dobb’s journal
•  http://www.ddj.com/architect/207200659 (Part 6)

•  Reverse_global
•  Copy from global to shared, then back to global in

reverse order

•  Reverse_shared
•  Copy from global to reverse shared and rewrite in

order to global

•  Output
–  http://www.ddj.com/architect/209601096?pgno=2

CS6963 
30

L7: Memory Hierarchy IV 

Summary of Lecture

•  Reordering transformations to improve
locality
– Tiling, permutation and unroll-and-jam

•  Guiding data to be placed in registers
•  Placing data in texture memory
•  Introduction to global memory

bandwidth

CS6963 
31

L7: Memory Hierarchy IV 

Next Time

•  Real examples with measurements
•  cudaProfiler and output from compiler

– How to tell if your optimizations are
working

CS6963 
32

L7: Memory Hierarchy IV 

