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L7: Memory Hierarchy Optimization IV,  
Bandwidth Optimization and Case Studies 

CS6963 

Administrative 

•  Next assignment on the website 
– Description at end of class 
– Due Wednesday, Feb. 17, 5PM 
– Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Mailing lists 

–  cs6963s10-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s10-teach@list.eng.utah.edu 
•  Please use for questions to Protonu and me 
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Administrative, cont. 

•  New Linux Grad Lab on-line! 
– 6 machines up and running 
– All machines have the GTX260 graphics 

cards, Intel Core i7 CPU 920 (quad-core 
2.67GHz) and 6Gb of 1600MHz (DDR) RAM. 
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Overview 

•  Complete discussion of data placement in registers and texture 
memory 

•  Introduction to memory system 
•  Bandwidth optimization 

•  Global memory coalescing 
•  Avoiding shared memory bank conflicts 
•  A few words on alignment 

•  Reading:  
–  Chapter 4, Kirk and Hwu 
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter4-

CudaMemoryModel.pdf 
–  Chapter 5, Kirk and Hwu 
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter5-

CudaPerformance.pdf 
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth 

optimizations) of NVIDIA CUDA Programming Guide 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 
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Optimizing the Memory Hierarchy on 
GPUs, Overview 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 
•  Align data structures to address boundaries 

CS6963 
6

L7: Memory Hierarchy IV 

Bandwidth to Shared Memory: 
Parallel Memory Accesses 

•  Consider each thread accessing a 
different location in shared memory 

•  Bandwidth maximized if each one is able 
to proceed in parallel 

•  Hardware to support this 
– Banked memory: each bank can support an 

access on every memory cycle 
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© 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Hwu, 2007‐2009 
ECE 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University 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Illinois, 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How addresses map to banks on G80 

•  Each bank has a bandwidth of 32 bits 
per clock cycle 

•  Successive 32-bit words are assigned to 
successive banks 

•  G80 has 16 banks 
–  So bank = address % 16 
–  Same as the size of a half-warp 

•  No bank conflicts between different half-
warps, only within a single half-warp 
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Shared memory bank conflicts 

•  Shared memory is as fast as registers if there are no 
bank conflicts 

•  The fast case: 
–  If all threads of a half-warp access different banks, there 

is no bank conflict 
–  If all threads of a half-warp access the identical address, 

there is no bank conflict (broadcast) 
•  The slow case: 

–  Bank Conflict: multiple threads in the same half-warp 
access the same bank 

–  Must serialize the accesses 
–  Cost = max # of simultaneous accesses to a single bank 
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Bank Addressing Examples 

•  No Bank Conflicts 
–  Linear addressing  

stride == 1 

•  No Bank Conflicts 
–  Random 1:1 Permutation 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples 

•  2-way Bank Conflicts 
–  Linear addressing  

stride == 2 

•  8-way Bank Conflicts 
–  Linear addressing  

stride == 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Linear Addressing 
•  Given: 
__shared__ float shared[256]; 
float foo =  

  shared[baseIndex + s * 
threadIdx.x]; 

•  This is only bank-conflict-
free if s shares no common 
factors with the number of 
banks  
–  16 on G80, so s must be odd 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

s=3 

s=1 
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Data types and bank conflicts 
•  This has no conflicts if type of shared is 32-

bits: 
foo = shared[baseIndex + threadIdx.x] 

•  But not if the data type is smaller 
–  4-way bank conflicts: 
__shared__ char shared[]; 
foo = shared[baseIndex + threadIdx.x]; 

–  2-way bank conflicts: 
__shared__ short shared[]; 
foo = shared[baseIndex + threadIdx.x]; 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Structs and Bank Conflicts 
•  Struct assignments compile into as many memory accesses as 

there are struct members: 

struct vector { float x, y, z; }; 
struct myType {  
 float f;  
 int c; 

}; 
__shared__ struct vector vectors[64]; 
__shared__ struct myType myTypes[64]; 

•  This has no bank conflicts for vector; struct size is 3 words 
–  3 accesses per thread, contiguous banks (no common factor with 

16) 

struct vector v = vectors[baseIndex + threadIdx.x]; 

•  This has 2-way bank conflicts for my Type; (2 accesses per 
thread) 

struct myType m = myTypes[baseIndex + threadIdx.x]; 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Common Bank Conflict Patterns, 1D Array 

•  Each thread loads 2 elements into 
shared mem: 
–  2-way-interleaved loads result in  

2-way bank conflicts: 
int tid = threadIdx.x; 

shared[2*tid] = global[2*tid]; 

shared[2*tid+1] = global[2*tid+1]; 
•  This makes sense for traditional 

CPU threads, exploits spatial 
locality in cache line and reduces 
sharing traffic 
–  Not in shared memory usage where 

there is no cache line effects but 
banking effects 

Thread 11 

Thread 10 

Thread 9 

Thread 8 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 

Bank 15 

Bank 7 

Bank 6 

Bank 5 

Bank 4 

Bank 3 

Bank 2 

Bank 1 

Bank 0 
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A Better Array Access Pattern 
•  Each thread loads one 

element in every 
consecutive group of 
blockDim elements. 

shared[tid] = global[tid]; 
shared[tid + blockDim.x] = 
global[tid + blockDim.x]; 

Bank 15 

Bank 7 

Bank 6 

Bank 5 

Bank 4 

Bank 3 

Bank 2 

Bank 1 

Bank 0 

Thread 15 

Thread 7 

Thread 6 

Thread 5 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 
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What Can You Do to Improve Bandwidth 
to Shared Memory? 

•  Think about memory access patterns 
across threads 
– May need a different computation & data 

partitioning 
– Sometimes “padding” can be used on a 

dimension to align accesses  
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A Running Example: 2-D Jacobi Relaxation 

•  A “stencil” computation 
– Output for a point depends on neighboring 

points from input 
– A common pattern in scientific computing 

and image/signal processing (Sobel) 

for (i=1; i<n; i++) 
    for (j=1; j<n; j++) 
         b[i][j] = 0.5*(a[i+1][j] + a[i-1][j] + a[i][j+1] + a[i][j-1]); 
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How to Map Jacobi to GPU (Tiling) 

for (i=1; i<n; i++) 
    for (j=1; j<n; j++) 
         b[i][j] = 0.5*(a[i+1][j] + a[i-1][j] + a[i][j+1] + a[i][j-1]); 

TILED SEQUENTIAL CODE 
// For clarity, assume n is evenly divisible by TX and TY 
for (i=1; i<(n/TX); i++)                // MAP TO blockIdx.x 
    for (j=1; j<(n/TY); j++)            // MAP TO blockIdx.y 
        for (x=0; x<TX; x++)          // MAP TO threadIdx.x 
            for (y=0; y<TY; y++)      // Possibly, MAP TO threadIdx.y 
                b[TX*i+x][TY*j+y] = 0.5*(a[TX*i+x+2][TY*j+y+1] +  
                                                       a[TX*i+x][TY*j+y+1] +  
                                                       a[TX*i+x+1][TY*j+y+2] +  
                                                       a[TX*i+x+1][TY*j+y]); 

CS6963 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Global Memory Accesses 

•  Each thread issues memory accesses to 
data types of varying sizes, perhaps as 
small as 1 byte entities 

•  Given an address to load or store, memory 
returns/updates “segments” of either 32 
bytes, 64 bytes or 128 bytes 

•  Maximizing bandwidth: 
– Operate on an entire 128 byte segment for 

each memory transfer 

20
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// GPU Kernel Code 
extern __global__ void Jacobi_GPU(float *b, float *a) 
  { 
    int t2; 
    int t4; 
    int t6; 
    int t10; 

    t2 = blockIdx.x; 
    t4 = blockIdx.y; 
    t6 = threadIdx.x; 
    t8 = threadIdx.y; 

    // make sure we don’t go off end 
    b[TX*t2+t6][TY*t4+t8] = 0.5*(a[TX*t2+t6+2][TY*t4+t8+1] +  
                                             a[TX*t2+t6][TY*t4+t8+1] +  
                                             a[TX*t2+t6+1][TY*t4+t8+2] +  
                                             a[TX*t2+t6+1][TY*t4+t8]);      
  } 

Automatically Generated Code 

// Assume size 8192x8192 for b 
dim3 dimGrid(8192/TX,8192/TY) 
dim3 dimBlock(TX,TY) 

CS6963 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// GPU Kernel Code 
extern __global__ void Jacobi_GPU(float *b, float *a) 
  { 
    int t2; 
    int t4; 
    int t6; 
    int t10; 

    t2 = blockIdx.x; 
    t4 = blockIdx.y; 
    t6 = threadIdx.x; 

   for (t8=0; t8<TY; t8++) 
    // make sure we don’t go off end 
    b[TX*t2+t6][TY*t4+t8] = 0.5*(a[TX*t2+t6+2][TY*t4+t8+1] +  
                                             a[TX*t2+t6][TY*t4+t8+1] +  
                                             a[TX*t2+t6+1][TY*t4+t8+2] +  
                                             a[TX*t2+t6+1][TY*t4+t8]);      
  } 

Slightly Different  
Automatically Generated Code 

// Assume size 8192x8192 for b 
dim3 dimGrid(8192/TX,8192) 
dim3 dimBlock(TX) 

CS6963 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texture<float, 1, 
cudaReadModeElementType> texRef; 
// GPU Kernel Code 
__global__ void jacobi_GPU(float *a[], float* 
b) 
{  

 int thidx = SBX * blockIdx.y ; 
 int thidy = threadIdx.x + SBY * 

blockIdx.x; 

 if(thidy > 0 && thidy < (N-1) ) 
 for(int j= 0 ; j< SBX ;j++){  
  if (   thidx > 0 &&   thidx < (N-1) ) 
    b[(thidx-1)*(N-2) + (thidy-1)] = 

0.5* ( tex1Dfetch(texRef,(thidx+1)*N + thidy) 
+ tex1Dfetch(texRef,(thidx-1)*N + thidy) + 
tex1Dfetch(texRef,thidx*N + (thidy+1)) + 
tex1Dfetch(texRef,(thidx)*N + (thidy-1)) ); 

  thidx++; 
 }//end for 

} 

Slightly Different Code –  
Using Texture Memory 
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From 2-D Jacobi Example 

•  Use of tiling just for computation 
partitioning to GPU 

•  Factor of 2 difference due to 
coalescing, even for identical layout and 
just differences in partitioning 

•  Texture memory improves performance 
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Matrix Transpose (from SDK) 
_global__ void transpose(float *odata, float *idata, int width, int height) 
{ 
        __shared__ float block[BLOCK_DIM][BLOCK_DIM+1]; 

        // read the matrix tile into shared memory 
        unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 
        unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 
        unsigned int index_in = yIndex * width + xIndex; 
        block[threadIdx.y][threadIdx.x] = idata[index_in]; 

        __syncthreads(); 

        // write the transposed matrix tile to global memory 
        xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
        yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
        unsigned int index_out = yIndex * height + xIndex; 
        odata[index_out] = block[threadIdx.x][threadIdx.y]; 
} 

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 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How to Get Compiler Feedback 

How many registers and shared memory does my code 
use? 

$ nvcc --ptxas-options=-v \ 
-I/Developer/CUDA/common/inc \ 
-L/Developer/CUDA/lib mmul.cu -lcutil 

Returns:  
ptxas info    : Compiling entry function 

'__globfunc__Z12mmul_computePfS_S_i' 
ptxas info    : Used 9 registers, 2080+1056 bytes smem, 

8 bytes cmem[1] 
CS6963 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CUDA Profiler 

•  What it does: 
– Provide access to hardware performance 

monitors 
– Pinpoint performance issues and compare 

across implementations 
•  Two interfaces: 

– Text-based:  
•  Built-in and included with compiler 

– GUI:  
•  Download from  
http://www.nvidia.com/object/cuda_programming_tools.html 

CS6963 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Example 
•  Reverse array from Dr. Dobb’s journal 
•  http://www.ddj.com/architect/207200659 (Part 6) 

•  Reverse_global 
•  Copy from global to shared, then back to global in 

reverse order 

•  Reverse_shared 
•  Copy from global to reverse shared and rewrite in 

order to global 

•  Output 
–  http://www.ddj.com/architect/209601096?pgno=2 

CS6963 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Summary of Lecture 

•  Reordering transformations to improve 
locality 
– Tiling, permutation and unroll-and-jam 

•  Guiding data to be placed in registers 
•  Placing data in texture memory 
•  Introduction to global memory 

bandwidth  

CS6963 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Next Time 

•  Real examples with measurements 
•  cudaProfiler and output from compiler 

– How to tell if your optimizations are 
working 
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