2/17/10

L7: Memory Hierarchy Optimization IV,
Bandwidth Optimization and Case Studies

THE
CS6963 u UNIVERSITY
OF UTAH

Administrative

* Next assignment on the website
— Description at end of class
— Due Wednesday, Feb. 17, 5PM
— Use handin program on CADE machines
* “handin cs6963 lab2 <probfile>"
* Mailing lists
— ¢s6963s10-discussion@list.eng.utah.edu
« Please use for all questions suitable for the whole class
* Feel free to answer your classmates questions!

— ¢56963s10-teach@list.eng.utah.edu
* Please use for questions o Protonu and me

Administrative, cont.

* New Linux Grad Lab on-line!
— 6 machines up and running
— All machines have the 6TX260 graphics
cards, Intel Core i7 CPU 920 (quad-core
2.676Hz) and 6Gb of 1600MHz (DDR) RAM.

3 THE
cses63 17 Memory ierarchy I W sy

Overview

+ Complete discussion of data placement in registers and texture
memory

+ Introduction to memory system
Bandwidth optimization
+ Global memory coalescing
+ Avoiding shared memory bank conflicts
+ A few words on alignment

+ Reading:
— Chapter 4, Kirk and Hwu

— http://courses.ece.illinois.edu/ece498/al/textbook/Chapter4-
ZudaMemoryMoae .pdf

— Chapter 5, Kirk and Hwu

— http://courses.ece.illinois.edu/ece498/al/textbook/Chapter5s-
CuéaPerformance.pdf

— Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth
optimizations) of NVIDIA CUDA Programming Guide

2/17/10

Targets of Memory Hierarchy
Optimizations

+ Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

* Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should b% less ‘rhag aﬁficipa‘red gain9 PYing

CS6963

5
L7: Memory Hierarchy IV

THE
U UNIVERSITY
OF UTAH

Optimizing the Memory Hierarchy on
GPUs, Overview

+ Device memory access times non-uniform so
data placement significantly affects
performance.

+ But controlling data placement may require
additional copying, so consider overhead.

+ Optimizations to increase memory bandwidth.
Tdea: maximize utility of each memory access.
+ Coalesce global memory accesses

* Avoid memory bank conflicts to increase memory
access parallelism

 Align data structures to address boundaries

3 6 THE
(56963 L7: Memory Hierarchy IV u R

Bandwidth to Shared Memory:
Parallel Memory Accesses

* Consider each thread accessing a
different location in shared memory

+ Bandwidth maximized if each one is able
to proceed in parallel
* Hardware to support this

— Banked memory: each bank can support an
access on every memory cycle

CS6963

THE
U UNIVERSITY
OF UTAH

7
L7: Memory Hierarchy IV

How addresses map to banks on 680

+ Each bank has a bandwidth of 32 bits
per clock cycle

* Successive 32-bit words are assigned to
successive banks

* 680 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

* No bank conflicts between different half-
warps, only within a single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 8
ECE 498AL, University of Illinois, Urbana-Champaign 7. Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

2/17/110

Shared memory bank conflicts

+ Shared memory is as fast as registers if there are no
bank conflicts

* The fast case:
— If all threads of a half-warp access different banks, there
is no bank conflict
— If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)
* The slow case:
— Bank Conflict: multiple threads in the same half-warp
access the same bank
— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 9 THE
ECE 498AL, University of llinois, Urbana-Champaign 7. Memory Hierarchy IV A

Bank Addressing Examples

» No Bank Conflicts » No Bank Conflicts

— Linear addressing — Random 1:1 Permutation
stride == 1

Thread 0 el Bank 0
Thread 1 ' Bank 1
Thread 2 i Bank 2
Thread 3 Bank 3
Thread 4 ' Bank 4

Thread 5
Thread 6
Thread 7

Bank 15

Thread 15 Bank 15

THE
UUNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10
ECE 498AL, University of llinois, Urbana-Champaign 7: Memory Hierarchy IV

Bank Addressing Examples

+ 2-way Bank Conflicts + 8-way Bank Conflicts

— Linear addressing — Linear addressing
stride == stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5 7

Thread 0
Thread 1

Thread 2 ~ Bank 2
Thread 3 ,‘ Bank 3

Thread 4

Thread 6

Thread 8
Thread 9
Thread 10
Thread 11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 1"
ECE 498AL, University of llinois, Urbana-Champaign 1 7: Memory Hierarchy IV

Linear Addressing
. Given: e

~_shared float shared[256]; Thread 4

Thread 5

float foo = Thread 6
Thread 7

shared[baseIndex + s * : :

Thread 15 Bank 15

threadIdx.x];

s=3

+ This is only bank-conflict-
free if s shares no common
factors with the number of
banks

— 16 0n 680, so s must be odd g~

THE
UUNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 12
ECE 498AL, University of llinois, Urbana-Champaign 7: Memory Hierarchy IV

2/17/110

Data types and bank conflicts Structs and Bank Conflicts

. . . : : _ + Struct assignments compile into as many memory accesses as
This has ho conflicts if type of shared is 32 There are shruct membens:

bits:
foo = shared[baseIndex + threadIdx.x] struct vector { float x, y, zj };
struct myType {
float f;
+ But not if the data type is smaller Lo : :
— 4-W0y bank conflicts: _ shared__ struct vector vectors[64]; 4. S Ts

_ shared__ char shared[];
foo = shared[ba

_ shared struct myType myTypes[64];

ndex + threadld + This has no bank conflicts for vector; struct size is 3 words

— 3 accesses per thread, contiguous banks (no common factor with
. 16
— 2-way bank conflicts:)
__shared__ short shared[];
foo = shared[baselIndex + threadIdx.x]

struct vector v = vectors[b dex + thr

Idx.x];

+ This has 2-way bank conflicts for my Type: (2 accesses per
thread)

struct myType m = myTypes[b

Index + threadIdx.x];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 13 THE —— © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 14 THE —
ECE 498AL, University of llinois, Urbana-Champaign 7: Memory Hierarchy IV u gf;’ lL\I/TE TY ECE 498AL, University of lllinois, Urbana-Champaign | 7: Memory Hierarchy IV u 8!;5 IL}{rE\RIP(IT\
/ /

Common Bank Conflict Patterns, 1D Array A Better Array Access Pattern

» Each thread loads 2 elements into » Each thread loads one
shared mem: element in every

— 2-way-interleaved loads result in H Thread 0
2—wa;l bank conflicts: - COHSBCI:ITIVC group of Thvead 1

int tid = threadIdx.x; E—y b|OCkDIm elemenTS Thread 2
shared[2*tid] = global([2*tid]; Treaa3 Tveads
shared[2*tid+1] = global[2*tid+1]; — _ ‘ Treaas
+ This makes sense for traditional shared[l-d] = globallt d]; Eeeg
CPU threads, exploits spatial e ; shared(tid + blockbim.x] = Rl
locality in cache line and reduces Teass global(ltid + blockDim.x]; ikl

Thread 10

sharing traffic
— Not in shared memory usage where

there is no cache line effects but
banking effects
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 16 THE g
ECE 498AL, University of llinois, Urbana-Champaign | 7: Memory Hierarchy IV u 8!;5 IL}{rE\RIP(ITY
4

. .
Thread 11

ECE 498AL, University of lllinois, Urbana-Champaign

15
L7: Memory Hierarchy IV

2/17/10

What Can You Do to Improve Bandwidth
to Shared Memory?

+ Think about memory access patterns
across threads
— May need a different computation & data
partitioning
— Sometimes “padding” can be used on a
dimension to align accesses

. 17
CS6963
© L7: Memory Hierarchy IV

THE
U UNIVERSITY
OF UTAH

A Running Example: 2-D Jacobi Relaxation

*+ A "stencil” computation
— Output for a point depends on neighboring
points from input
— A common pattern in scientific computing
and image/signal processing (Sobel)

for (i=1; i<n; i++)
for (1=1; j<n; j++)
b[ilfi] = 0.5*(ali+1]0] + a[i-1]0] + afili+1] + a[l[-11);

) 18 THE
€56963 L7: Memory Hierarchy IV u 8‘: [Uv_l!-:‘:l}S(ITY

How to Map Jacobi to GPU (Tiling)

for (i=1; i<n; i++)
for (j=1; j<n; j++)
bi]j] = 0.5*(a[i+1][] + ali-1]0] + ali]j+1] + a[i]j-11);

TILED SEQUENTIAL CODE
I For clarity, assume n is evenly divisible by TX and TY
for (i=1; i<(n/TX); i++) /I MAP TO blockldx.x
for (j=1; j<(n/TY); j++) /I MAP TO blockldx.y
for (x=0; x<TX; x++) /I MAP TO threadldx.x
for (y=0; y<TY; y++) // Possibly, MAP TO threadldx.y
bITX*i+xX][TY*j+y] = 0.5*(@[TX*i+x+2][TY*j+y+1] +
a[TX i+X][TY*j+y+1] +
a[TX*i+x+1][TY*j+y+2] +
a[TX*i+x+1][TY*j+y]);

N 19 THE
€56963 L7: Memory Hierarchy IV u SR

Global Memory Accesses

Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

Maximizing bandwidth:

— Operate on an entire 128 byte segment for
each memory transfer

€S6963 20 THE
L7: Memory Hierarchy IV u 81;1 IUV_I_E}}S(ITY

2/17/10

Automatically Generated Code

/I GPU Kernel Code
extern __global__ void Jacobi_GPU(float *b, float *a)

II Assume size 8192x8192 for b 1y,
dim3 dimGrid(8192/TX,8192/TY) '
dim3 dimBlock(TX,TY) 2 = blockldx.x;
t4 = blockldx.y;

6 = threadldx.x;
t8 = threadldx.y;

/' make sure we don’t go off end

b[TX*2+t6][TY*t4+t8] = 0.5*(@[TX*12+t6+2][TY*t4+t8+1] +
a[TX*2+6][TY*t4+t8+1] +
a[TX 2+6+1][TY*t4+18+2] +
a[TX*2+6+1][TY*t4+8]);

Slightly Different
Automatically Generated Code

/I GPU Kernel Code
extern __global__ void Jacobi_GPU(float *b, float *a)

int t2;
. int t4;

/I Assume size 8192x8192 forb ;4.

dim3 dimGrid(8192/TX,8192) int t10;

dim3 dimBlock(TX)
t2 = blockldx.x;
t4 = blockldx.y;
6 = threadldx.x;

for (t8=0; t8<TY; t8++)

/I make sure we don't go off end

[TX*t2+t6][TY*t4+18] = 0.5*(a[TX*2+t6+2][TY*t4+t8+1] +
A[TX2+B][TY* t4+18+1] +
A[TX*2+B+1][TY*t4+t8+2] +
a[TX*12+B+1][TY*t4+t8]);

22 R s
€56963 L7: Memory Hierarchy IV IE”L}/TEARS(ITY

2D - Jacobi Relaxation

Performance improvement by exploiting memory coalescing through threads

m ||| |
oIIIIII||||||||| ||

hB &3 B4 &6 &64 16&B 1632 34 316 364 4B 643
k4 16 KB4 BB &3 164 1616 166 3B 3N 64 6h16 BB

™XXTY
THE
u UNIVERSITY
OF UTAH

GFLOPS
~ o ®» ° ~© =

o

Slightly Different Code -
Using Texture Memory . ,e<ioat 1,

cudaReadModeElementType> texRef;
/I GPU Kernel Code
__global__ void jacobi_GPU(float *a[], float*

b)
{
int thidx = SBX * blockldx.y ;
int thidy = threadldx.x + SBY *
blockldx.x;

if(thidy > 0 && thidy < (N-1))
for(int j= 0 ; j< SBX jj++){
if (thidx >0 && thidx < (N-1))
b[(thidx-1)*(N-2) + (thidy-1)] =

0.5* (tex1Dfetch(texRef, (thidx+1)*N + thidy)
+ tex1Dfetch(texRef,(thidx-1)*N + thidy) +
tex1Dfetch(texRef,thidx*N + (thidy+1)) +
tex1Dfetch(texRef, (thidx)*N + (thidy-1)));

thidx++;
Ylend for

E
NIVERSITY
F UTAH

2/17/10

From 2-D Jacobi Example

2D - Jacobi Relaxation
Texture Memory Effect on Input Sizes (Fixed Tile Size)
it Tesae * Use of tiling just for computation

memory ey . .
ot ey partitioning to GPU

i? + Factor of 2 difference due to

2 coalescing, even for identical layout and
just differences in partitioning

. I + Texture memory improves performance

512x512 1536x1536 2560x2560 3584x3584 4608x4608 5632x5632 6656x6656 7680x7680

UNIVERSITY €56963 = UNIVERSITY
s SITY
u OF UTAH L7: Memory Hierarchy IV u OF UTAH

GFLOPS
s &

Input Sizes

Matrix Transpose (from SDK) How to Get Compiler Feedback

_global__ void transpose(float *odata, float *idata, int width, int height)
{ .

__shared__ float block[BLOCK_DIM][!

How many registers and shared memory does my code

// read the matrix tile into shared memory use?

unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; : —

unsigned int yIndex = blockIdxy * BLOCK_DIM + threadIdx.y: $ nvce --ptxas-options=-v \

unsigned int index_in = yIndex * width + xIndex; -I/Developer/CUDA/commor\/inc \

block[threadIdx.y][threadIdx.x] = idata[index_in]; -L/Developer‘/CUDA/lib mmul.cu -leutil

__syncthreads(): S—

// write the transposed matrix tile to global memory Returns:

xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadTdxy: ptxasinfo :Compiling entry function
unsigned int index_out = yIndex * height + xIndex; globfunc__Z12mmul_computePfS_S_i

) odatafindex_out] = block[threadIdx.x][threadIdx.y]; ptxas info :Used 9 registers, 2080+1056 bytes smem,

8 bytes cmem[1]
2

! UK 56963 2 UK SITY
L7: Memory Hierarchy IV u SR L7: Memory Hierarchy IV u UNIVERSITY

global memory

€S6963

2/17/10

CUDA Profiler

* What it does:

—Provide access to hardware performance
monitors

— Pinpoint performance issues and compare
across implementations
« Two interfaces:
— Text-based:
* Built-in and included with compiler
- GUL:
» Download from

http://www.nvidia.com/object/cuda_programming_tools.html

THE
u UNIVERSITY
OF UTAH

. 29
(56963 L7: Memory Hierarchy IV

Example
* Reverse array from Dr. Dobb's journal
* http://www.ddj.com/architect/207200659 (Part 6)
Reverse_global

+ Copy from global to shared, then back to global in
reverse order

Reverse_shared

+ Copy from global to reverse shared and rewrite in
order to global

Output
— http://www.ddj.com/architect/209601096?pgno=2

30
(56963 L7: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Summary of Lecture

Reordering transformations to improve
locality

— Tiling, permutation and unroll-and-jam
Guiding data to be placed in registers
Placing data in texture memory

Introduction to global memory
bandwidth

. 31
(56963 L7: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Next Time

* Real examples with measurements

* cudaProfiler and output from compiler

— How to tell if your optimizations are
working

32
(56963 L7: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

