
2/9/10

1

L6: Memory Hierarchy Optimization III,
Bandwidth Optimization

CS6963 

Administrative

•  Next assignment on the website
– Description at end of class
– Due Wednesday, Feb. 17, 5PM
– Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s10-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s10-teach@list.eng.utah.edu
•  Please use for questions to Protonu and me

CS6963 
2

L6: Memory Hierarchy III 

Administrative, cont.

•  New Linux Grad Lab coming on-line!
– 6 machines up and running
– All machines have the GTX260 graphics

cards, Intel Core i7 CPU 920 (quad-core
2.67GHz) and 6Gb of 1600MHz (DDR) RAM.

•  Need CUDA installed

3

L6: Memory Hierarchy III 

CS6963 

Overview

•  Complete discussion of data placement in registers and texture
memory

•  Introduction to memory system
•  Bandwidth optimization

•  Global memory coalescing
•  Avoiding shared memory bank conflicts
•  A few words on alignment

•  Reading:
–  Chapter 4, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter4-

CudaMemoryModel.pdf
–  Chapter 5, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/Chapter5-

CudaPerformance.pdf
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth

optimizations) of NVIDIA CUDA Programming Guide

CS6963 
4

L6: Memory Hierarchy III 

2/9/10

2

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
5

L6: Memory Hierarchy III 

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 
6

L6: Memory Hierarchy III 

Data Placement: Conceptual
•  Copies from host to device go to some part of global memory

(possibly, constant or texture memory)
•  How to use SP shared memory

•  Must construct or be copied from global memory by kernel program
•  How to use constant or texture cache

–  Read-only “reused” data can be placed in constant & texture memory
by host

•  Also, how to use registers
–  Most locally-allocated data is placed directly in registers
–  Even array variables can use registers if compiler understands

access patterns
–  Can allocate “superwords” to registers, e.g., float4
–  Excessive use of registers will “spill” data to local memory

•  Local memory
–  Deals with capacity limitations of registers and shared memory
–  Eliminates worries about race conditions
–  … but SLOW

CS6963 
7

L6: Memory Hierarchy III 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i];

Permute

CS6963 
8

L6: Memory Hierarchy III 

2/9/10

3

Legality of Tiling

•  Tiling = strip-mine and permutation
– Strip-mine does not reorder iterations
– Permutation must be legal
OR
–  strip size less than dependence

distance

CS6963 
9

L6: Memory Hierarchy III 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations
–  Between grids if total data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

–  Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still
exceeds shared memory capacity

CS6963 
10

L6: Memory Hierarchy III 

“Tiling” for Registers
•  A similar technique can be used to map data to

registers
•  Unroll-and-jam

•  Unroll outer loops in a nest and fuse together
resulting inner loops

•  Jamming safe if dependences are not reversed
•  Scalar replacement

–  May be followed by replacing array references
with scalar variables to help compiler identify
register opportunities

CS6963 
11

L6: Memory Hierarchy III 

Unroll-and-Jam Example
for (j=1; j<M; j++)

for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j+=2)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i];
for (i=1; i<N; i++)
 D[i] = D[i] + B[j+1][i]; 

Unroll
Outer
Loop

“Jam” copies
of inner loop

CS6963 

for (j=1; j<M; j+=2)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i];
 D[i] = D[i] + B[j+1][i]; 

12

L6: Memory Hierarchy III 

2/9/10

4

Scalar Replacement Example

Result of
Unroll-and-jam

CS6963 

for (j=1; j<M; j+=2)
for (i=1; i<N; i++) {
 D[i] = D[i] + B[j][i];
 D[i] = D[i] + B[j+1][i];
} 

for (j=1; j<M; j+=2)
for (i=1; i<N; i++){
 t0 = D[i];
 t0 = t0 + B[j][i];
 t0 = t0 + B[j+1][i];
 D[i] = t0;
} 

Scalar
replacement for
D[i]

13

L6: Memory Hierarchy III 

Legality of Unroll-and-Jam

•  Unrolling is always safe
•  If you take care not to go past end of iterations

•  Jamming inner loops back together
– This optimization is safe as long as no

dependences are reversed

14

L6: Memory Hierarchy III 

CS6963 

More Details
•  Similar to tiling, but reuse must be

explicit in code
•  Interaction with the register allocator

– Historically, array variables were not
placed in registers due to concerns about
data dependences

– Nvcc capable of placing small array
variables in registers if subscripts are
constant and for some simple subscripts

– Can tell from compiler output whether data
is in a register (more later)

15

L6: Memory Hierarchy III 

CS6963 

Overview of Texture Memory
•  Recall, texture cache of read-only data
•  Special protocol for allocating and

copying to GPU
– texture<Type, Dim, ReadMode> texRef;

•  Dim: 1, 2 or 3D objects

•  Special protocol for accesses (macros)
– tex2D(<name>,dim1,dim2);

•  In full glory can also apply functions to
textures

CS6963 
16

L6: Memory Hierarchy III 

2/9/10

5

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindFloat);
cudaArray* cu_array;
cudaMallocArray(&cu_array, &channelDesc, width, height);
cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear; tex.normalized = true;
cudaBindTextureToArray(tex,cu_array, channelDesc);
// execute the kernel
transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;

… = tex2D(tex,i,j);
CS6963 

17

L6: Memory Hierarchy III 

Introduction to Memory System

•  Recall execution model for a multiprocessor
– Scheduling unit: A “warp” of threads is issued

at a time (32 threads in current chips)
– Execution unit: Each cycle, 8 “cores” or SPs are

executing
– Memory unit: Memory system scans a “half

warp” or 16 threads for data to be loaded

18

L6: Memory Hierarchy III 

CS6963 

Data Location Impacts Latency of
Memory Access

•  Registers
–  Can load in current instruction cycle

•  Constant or Texture Memory
–  In cache? Single address can be loaded for half-

warp per cycle
–  O/W, global memory access

•  Global memory (next)
•  Shared memory

–  Single cycle if accesses can be done in parallel

19

L6: Memory Hierarchy III 

CS6963 

Global Memory Accesses

•  Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

•  Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

•  Maximizing bandwidth:
– Operate on an entire 128 byte segment for

each memory transfer

20

L6: Memory Hierarchy III 

CS6963 

2/9/10

6

Understanding Global Memory Accesses
Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on data
type)

•  Find other active threads requesting addresses within
that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!

CS6963 
21

L6: Memory Hierarchy III 

Protocol for most systems (including lab6
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word
– Alignment to the beginning of a segment
becomes a very important optimization!

CS6963 
22

L6: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

23

L6: Memory Hierarchy III 

Consecutive
threads will
access different
rows in memory.

Each thread will
require a different
memory
operation.

Odd: But this is
the RIGHT layout
for a
conventional
multi-core!

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

24

L6: Memory Hierarchy III 

Each thread in a half-
warp (assuming rows
of 16 elements) will
access consecutive
memory locations.

GREAT! All accesses
are coalesced.

With just a 4x4 block,
we may need 4
separate memory
operations to load data
for a half-warp.

2/9/10

7

How to find out compute capability

See Appendix A.1 in NVIDIA CUDA Programming Guide to look up your device.

CADE machines are all Compute Capability 1.0 or 1.1!

New Linux lab, and Tesla cluster are Compute Capability 1.2 and 1.3.

25

L6: Memory Hierarchy III 

CS6963 

Alignment

•  Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
– An aligned memory address is a multiple of

the memory segment size
– In compute 1.0 and 1.1 devices, address

accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

– In future systems, sometimes alignment
can reduce number of accesses

CS6963 
26

L6: Memory Hierarchy III 

More on Alignment

•  Objects allocated statically or by
cudaMalloc begin at aligned addresses
– But still need to think about index

expressions
•  May want to align structures

struct __align__(8) { struct __align__(16) {
 float a; float a;
 float b; float b;
}; float c;
 };

CS6963 
27

L6: Memory Hierarchy III 

What Can You Do to Improve Bandwidth
to Global Memory?

•  Think about spatial reuse and access
patterns across threads
– May need a different computation & data

partitioning
– May want to rearrange data in shared

memory, even if no temporal reuse
(transpose example from L4)

– Similar issues, but much better in future
hardware generations

CS6963 
28

L6: Memory Hierarchy III 

2/9/10

8

Bandwidth to Shared Memory:
Parallel Memory Accesses

•  Consider each thread accessing a
different location in shared memory

•  Bandwidth maximized if each one is able
to proceed in parallel

•  Hardware to support this
– Banked memory: each bank can support an

access on every memory cycle

CS6963 
29

L6: Memory Hierarchy III 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits
per clock cycle

•  Successive 32-bit words are assigned to
successive banks

•  G80 has 16 banks
–  So bank = address % 16
–  Same as the size of a half-warp

•  No bank conflicts between different half-
warps, only within a single half-warp

30

L6: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  No Bank Conflicts
–  Linear addressing

stride == 1

•  No Bank Conflicts
–  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

31

L6: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

32

L6: Memory Hierarchy III 

2/9/10

9

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
–  If all threads of a half-warp access different banks, there

is no bank conflict
–  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)
•  The slow case:

–  Bank Conflict: multiple threads in the same half-warp
access the same bank

–  Must serialize the accesses
–  Cost = max # of simultaneous accesses to a single bank

33

L6: Memory Hierarchy III 

Summary of Lecture

•  Reordering transformations to improve
locality
– Tiling, permutation and unroll-and-jam

•  Guiding data to be placed in registers
•  Placing data in texture memory
•  Introduction to global memory

bandwidth

CS6963 
34

L6: Memory Hierarchy III 

Next Time

•  Real examples with measurements
•  cudaProfiler and output from compiler

– How to tell if your optimizations are
working

CS6963 
35

L6: Memory Hierarchy III 

