
2/4/10

1

L5: Memory Hierarchy Optimization II,
Locality and Data Placement, cont.

CS6963 

Administrative

•  Next assignment on the website
– Description at end of class
– Due Wednesday, Feb. 17, 5PM
– Use handin program on CADE machines

•  “handin cs6963 lab2 <probfile>”
•  Mailing lists

–  cs6963s10-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s10-teach@list.eng.utah.edu
•  Please use for questions to Protonu and me

CS6963 
2

L5: Memory Hierarchy II 

Overview

•  High level description of how to write code to optimize for
memory hierarchy
–  Code reordering transformations: permutation, tiling, unroll-

and-jam
–  Placing data in registers and texture memory
–  Introduction to bandwidth optimization for global memory

•  Reading:
–  Chapter 4, Kirk and Hwu
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth

optimizations) of NVIDIA CUDA Programming Guide

CS6963 
3

L5: Memory Hierarchy II 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
4

L5: Memory Hierarchy II 

2/4/10

2

Optimizing the Memory Hierarchy on
GPUs, Overview

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism
•  Align data structures to address boundaries

CS6963 
5

L5: Memory Hierarchy II 

Aside: Capacity Questions
•  How much shared memory, global memory,

registers, constant memory, constant cache, etc.?
–  deviceQuery function (in SDK) instantiates

variable of type cudaDeviceProp with this
information and prints it out.

•  Summary for 9400 M
–  8192 registers per SM
–  16KB shared memory per SM
–  64KB constant memory

•  stored in global memory
•  presumably, 8KB constant cache

–  256MB global memory

CS6963 
6

L5: Memory Hierarchy II 

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963 
7

L5: Memory Hierarchy II 

Data Placement: Conceptual
•  Copies from host to device go to some part of global memory

(possibly, constant or texture memory)
•  How to use SP shared memory

•  Must construct or be copied from global memory by kernel program
•  How to use constant or texture cache

–  Read-only “reused” data can be placed in constant & texture memory
by host

•  Also, how to use registers
–  Most locally-allocated data is placed directly in registers
–  Even array variables can use registers if compiler understands

access patterns
–  Can allocate “superwords” to registers, e.g., float4
–  Excessive use of registers will “spill” data to local memory

•  Local memory
–  Deals with capacity limitations of registers and shared memory
–  Eliminates worries about race conditions
–  … but SLOW

CS6963 
8

L5: Memory Hierarchy II 

2/4/10

3

Data Placement: Syntax

•  Through type qualifiers
–  __constant__, __shared__, __local__,

__device__
•  Through cudaMemcpy calls

–  Flavor of call and symbolic constant designate
where to copy

•  Implicit default behavior
–  Device memory without qualifier is global memory
–  Host by default copies to global memory
–  Thread-local variables go into registers unless

capacity exceeded, then local memory

CS6963 
9

L5: Memory Hierarchy II 

Rest of Today’s Lecture

•  Mechanics of how to place data in
shared memory and constant memory

•  Tiling transformation to reuse data
within
– Shared memory
– Constant cache

10

L5: Memory Hierarchy II 

Now Let’s Look at Shared Memory

•  Common Programming Pattern (5.1.2
of CUDA manual)
–  Load data into shared memory
–  Synchronize (if necessary)
–  Operate on data in shared memory
–  Synchronize (if necessary)
–  Write intermediate results to global

memory
–  Repeat until done

Shared 
memory 

Global memory 

CS6963 
11

L5: Memory Hierarchy II 
12 

Can Use Reordering Transformations!

•  Analyze reuse in computation
•  Apply loop reordering transformations

to improve locality based on reuse
•  With any loop reordering

transformation, always ask
– Safety? (doesn’t reverse dependences)
– Profitablity? (improves locality)

CS6963 
12

L5: Memory Hierarchy II 

2/4/10

4

Loop Permutation:
A Reordering Transformation

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 
13

L5: Memory Hierarchy II 

Safety of Permutation

•  Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++)
 for (j=1; j<6; j++)
 A[i+1][j-1]=A[i][j]

 +B[j]; 

CS6963 

•  Intuition: Cannot permute two loops i and j in a loop
nest if doing so reverses the direction of any
dependence.

14

L5: Memory Hierarchy II 

Tiling (Blocking):
Another Loop Reordering Transformation
•  Blocking reorders loop iterations to

bring iterations that reuse data closer
in time

J 

I 

J 

I 

CS6963 
15

L5: Memory Hierarchy II 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j][i];

Permute

CS6963 
16

L5: Memory Hierarchy II 

2/4/10

5

Legality of Tiling

•  Tiling = strip-mine and permutation
– Strip-mine does not reorder iterations
– Permutation must be legal
OR
–  strip size less than dependence

distance

CS6963 
17

L5: Memory Hierarchy II 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations
–  Between grids if total data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

–  Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still
exceeds shared memory capacity

CS6963 
18

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix mulZplicaZon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

19

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Tiled Matrix Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

20

L5: Memory Hierarchy II 

2/4/10

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared Memory Usage

•  Assume each SMP has 16KB shared memory
–  Each Thread Block uses 2*256*4B = 2KB of shared

memory.
–  Can potentially have up to 8 Thread Blocks actively

executing
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads
•  In practice, there will probably be up to half of this due to

scheduling to make use of SPs.
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB

shared memory usage per Thread Block, allowing only up to
two Thread Blocks active at the same time

21

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

First-order Size Considerations

•  Each Thread Block should have many
threads
– BLOCK_SIZE of 16 gives 16*16 = 256 threads

•  And many Thread Blocks
– A 1024*1024 P Matrix gives 64*64 = 4096

Thread Blocks

•  Each thread block performs 2*256 = 512
float loads from global memory for 256 *
(2*16) = 8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

22

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
 M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

23

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Overview
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

 code from the next few slides };

24

L5: Memory Hierarchy II 

2/4/10

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

25

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

26

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 2.0) yields 
just under 400 Gflops. 

27

L5: Memory Hierarchy II 

Matrix Multiply in CUDA

•  Imagine you want to compute extremely
large matrices.
– That don’t fit in global memory

•  This is where an additional level of tiling
could be used, between grids

CS6963 
28

L5: Memory Hierarchy II 

2/4/10

8

“Tiling” for Registers
•  A similar technique can be used to map data to

registers
•  Unroll-and-jam

•  Unroll outer loops in a nest and fuse together
resulting inner loops

•  Equivalent to “strip-mine” followed by permutation
•  Fusion safe if dependences are not reversed
•  Scalar replacement

–  May be followed by replacing array references
with scalar variables to help compiler identify
register opportunities

–  Used to be important because earlier compilers
would not place array variables in registers, but
not the case with nvcc compiler

CS6963 
29

L5: Memory Hierarchy II 

Overview of Texture Memory
•  Recall, texture cache of read-only data
•  Special protocol for allocating and

copying to GPU
– texture<Type, Dim, ReadMode> texRef;

•  Dim: 1, 2 or 3D objects

•  Special protocol for accesses (macros)
– tex2D(<name>,dim1,dim2);

•  In full glory can also apply functions to
textures

30

L5: Memory Hierarchy II 

CS6963 

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindFloat);
cudaArray* cu_array;
cudaMallocArray(&cu_array, &channelDesc, width, height);
cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear; tex.normalized = true;
cudaBindTextureToArray(tex,cu_array, channelDesc);
// execute the kernel
transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;

… = tex2D(tex,i,j);
31

L5: Memory Hierarchy II 
CS6963 

Introduction to Global Memory Bandwidth:
Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

•  Find other active threads requesting addresses
within that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
CS6963 

32

L5: Memory Hierarchy II 

2/4/10

9

Protocol for most systems (including lab6
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word

CS6963 
33

L5: Memory Hierarchy II 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

34

L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

35

L5: Memory Hierarchy II 

Summary of Lecture

•  Reordering transformations to improve
locality
– Tiling, permutation and unroll-and-jam

•  Matrix multiply example for shared
memory

•  Guiding data to be placed in registers
•  Placing data in texture memory
•  Introduction to global memory

bandwidth (if time)
CS6963 

36

L5: Memory Hierarchy II 

2/4/10

10

Next Time

•  Bandwidth optimizations
– Global memory access coalescing
– Avoiding bank conflicts in shared memory

•  If time permits, cudaProfiler
– How to tell if your optimizations are

working

CS6963 
37

L5: Memory Hierarchy II 

