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L5: Memory Hierarchy Optimization II, 
Locality and Data Placement, cont. 

CS6963 

Administrative 

•  Next assignment on the website 
– Description at end of class 
– Due Wednesday, Feb. 17, 5PM 
– Use handin program on CADE machines 

•  “handin cs6963 lab2 <probfile>”  
•  Mailing lists 

–  cs6963s10-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s10-teach@list.eng.utah.edu 
•  Please use for questions to Protonu and me 
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Overview 

•  High level description of how to write code to optimize for 
memory hierarchy 
–  Code reordering transformations: permutation, tiling, unroll-

and-jam 
–  Placing data in registers and texture memory 
–  Introduction to bandwidth optimization for global memory 

•  Reading:  
–  Chapter 4, Kirk and Hwu 
–  http://courses.ece.illinois.edu/ece498/al/textbook/

Chapter4-CudaMemoryModel.pdf 
–  Sections 3.2.4 (texture memory) and 5.1.2 (bandwidth 

optimizations) of NVIDIA CUDA Programming Guide 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 
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Optimizing the Memory Hierarchy on 
GPUs, Overview 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 
•  Align data structures to address boundaries 
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Aside: Capacity Questions 
•  How much shared memory, global memory, 

registers, constant memory, constant cache, etc.? 
–  deviceQuery function (in SDK) instantiates 

variable of type cudaDeviceProp with this 
information and prints it out. 

•  Summary for 9400 M 
–  8192 registers per SM  
–  16KB shared memory per SM 
–  64KB constant memory  

•  stored in global memory 
•  presumably, 8KB constant cache 

–  256MB global memory  
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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Data Placement: Conceptual 
•  Copies from host to device go to some part of global memory 

(possibly, constant or texture memory) 
•  How to use SP shared memory 

•  Must construct or be copied from global memory by kernel program  
•  How to use constant or texture cache 

–  Read-only “reused” data can be placed in constant & texture memory 
by host 

•  Also, how to use registers 
–  Most locally-allocated data is placed directly in registers 
–  Even array variables can use registers if compiler understands 

access patterns 
–  Can allocate “superwords” to registers, e.g., float4 
–  Excessive use of registers will “spill” data to local memory 

•  Local memory  
–  Deals with capacity limitations of registers and shared memory 
–  Eliminates worries about race conditions 
–  … but SLOW 
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Data Placement: Syntax 

•  Through type qualifiers  
–  __constant__, __shared__, __local__, 

__device__ 
•  Through cudaMemcpy calls 

–  Flavor of call and symbolic constant designate 
where to copy 

•  Implicit default behavior 
–  Device memory without qualifier is global memory 
–  Host by default copies to global memory 
–  Thread-local variables go into registers unless 

capacity exceeded, then local memory 
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Rest of Today’s Lecture 

•  Mechanics of how to place data in 
shared memory and constant memory 

•  Tiling transformation to reuse data 
within 
– Shared memory 
– Constant cache 
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Now Let’s Look at Shared Memory 

•  Common Programming Pattern (5.1.2 
of CUDA manual) 
–  Load data into shared memory 
–  Synchronize (if necessary) 
–  Operate on data in shared memory 
–  Synchronize (if necessary) 
–  Write intermediate results to global 

memory 
–  Repeat until done 

Shared 
memory 

Global memory 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Can Use Reordering Transformations! 

•  Analyze reuse in computation 
•  Apply loop reordering transformations 

to improve locality based on reuse 
•  With any loop reordering 

transformation, always ask 
– Safety? (doesn’t reverse dependences) 
– Profitablity? (improves locality) 
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Loop Permutation: 
A Reordering Transformation 

for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

Which one is better for row-major storage? 
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Safety of Permutation 

•  Ok to permute? 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=1; j<6; j++) 
    A[i+1][j-1]=A[i][j] 

      +B[j]; 

CS6963 

•  Intuition: Cannot permute two loops i and j in a loop 
nest if doing so reverses the direction of any 
dependence. 
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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Blocking reorders loop iterations to 

bring iterations that reuse data closer 
in time 

J 

I 

J 

I 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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j][i]; 

Permute 

CS6963 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Legality of Tiling 

•  Tiling = strip-mine and permutation 
– Strip-mine does not reorder iterations 
– Permutation must be legal 
OR 
–  strip size less than dependence 

distance 

CS6963 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A Few Words On Tiling 

•  Tiling can be used hierarchically to compute 
partial results on a block of data wherever there 
are capacity limitations 
–  Between grids if total data exceeds global memory 

capacity 
–  Across thread blocks if shared data exceeds shared 

memory capacity (also to partition computation across 
blocks and threads) 

–  Within threads if data in constant cache exceeds cache 
capacity  or data in registers exceeds register capacity 
or (as in example) data in shared memory for block still 
exceeds shared memory capacity 

CS6963 
18


L5: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Matrix Multiplication 
A Simple Host Version in C 
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WIDTH WIDTH 

// Matrix mulZplicaZon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Tiled Matrix Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared Memory Usage 

•  Assume each SMP has 16KB shared memory 
–  Each Thread Block uses 2*256*4B = 2KB of shared 

memory.  
–  Can potentially have up to 8 Thread Blocks actively 

executing 
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096 

pending loads 
•  In practice, there will probably be up to half of this due to 

scheduling to make use of SPs. 
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB 

shared memory usage per Thread Block, allowing only up to 
two Thread Blocks active at the same time 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

First-order Size Considerations 

•  Each Thread Block should have many 
threads 
– BLOCK_SIZE of 16 gives 16*16 = 256 threads 

•  And many Thread Blocks 
– A 1024*1024 P Matrix gives 64*64 = 4096 

Thread Blocks 

•  Each thread block performs 2*256 = 512 
float loads from global memory for 256 * 
(2*16) = 8,192 mul/add operations.  
– Memory bandwidth no longer a limiting factor 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
dim3 dimGrid(N.width  / dimBlock.x,  
      M.height / dimBlock.y); 

For very large N and M dimensions, one 
will need to add another level of blocking 

and execute the second-level blocks 
sequentially. 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Overview 
// Block index 
int bx = blockIdx.x; 
int by = blockIdx.y; 
// Thread index 
int tx = threadIdx.x; 
int ty = threadIdx.y; 

// Pvalue stores the element of the block sub-matrix 
// that is computed by the thread 
float Pvalue = 0; 

// Loop over all the sub-matrices of M and N 
// required to compute the block sub-matrix 
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) { 

 code from the next few slides }; 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Load Data to Shared 
Memory 

// Get a pointer to the current sub-matrix Msub of M 

Matrix Msub = GetSubMatrix(M, m, by); 

// Get a pointer to the current sub-matrix Nsub of N 

Matrix Nsub = GetSubMatrix(N, bx, m); 

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; 
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; 

// each thread loads one element of the sub-matrix 

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); 

// each thread loads one element of the sub-matrix 

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty); 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Compute Result 

// Synchronize to make sure the sub-matrices are loaded 
// before starting the computation 

__syncthreads(); 

// each thread computes one element of the block sub-matrix 

for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

// Synchronize to make sure that the preceding 
// computation is done before loading two new 
// sub-matrices of M and N in the next iteration 

__syncthreads(); 
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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Save Result 

// Get a pointer to the block sub-matrix of P 

Matrix Psub = GetSubMatrix(P, bx, by); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 

SetMatrixElement(Psub, tx, ty, Pvalue); 

This code should run at about 150 Gflops on a 
GTX or Tesla. 
State‐of‐the‐art mapping (in CUBLAS 2.0) yields 
just under 400 Gflops. 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Matrix Multiply in CUDA 

•  Imagine you want to compute extremely 
large matrices. 
– That don’t fit in global memory 

•  This is where an additional level of tiling 
could be used, between grids  

CS6963 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“Tiling” for Registers 
•  A similar technique can be used to map data to 

registers 
•  Unroll-and-jam 

•  Unroll outer loops in a nest and fuse together 
resulting inner loops 

•  Equivalent to “strip-mine” followed by permutation 
•  Fusion safe if dependences are not reversed 
•  Scalar replacement 

–  May be followed by replacing array references 
with scalar variables to help compiler identify 
register opportunities 

–  Used to be important because earlier compilers 
would not place array variables in registers, but 
not the case with nvcc compiler 

CS6963 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Overview of Texture Memory 
•  Recall, texture cache of read-only data 
•  Special protocol for allocating and 

copying to GPU 
– texture<Type, Dim, ReadMode> texRef;  

•  Dim: 1, 2 or 3D objects 

•  Special protocol for accesses (macros) 
– tex2D(<name>,dim1,dim2); 

•  In full glory can also apply functions to 
textures 
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CS6963 

Using Texture Memory (simpleTexture project 
from SDK) 

cudaMalloc( (void**) &d_data, size); 
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, 

cudaChannelFormatKindFloat); 
cudaArray* cu_array; 
cudaMallocArray( &cu_array, &channelDesc, width, height );  
cudaMemcpyToArray( cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice); 
// set texture parameters 
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;  
tex.filterMode = cudaFilterModeLinear; tex.normalized = true; 
cudaBindTextureToArray( tex,cu_array, channelDesc); 
// execute the kernel 
transformKernel<<< dimGrid, dimBlock, 0 >>>( d_data, width, height, angle); 

Kernel function:  
// declare texture reference for 2D float texture 
texture<float, 2, cudaReadModeElementType> tex; 

… = tex2D(tex,i,j); 
31
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Introduction to Global Memory Bandwidth:  
Understanding Global Memory Accesses 

Memory protocol for compute capability 
1.2* (CUDA Manual 5.1.2.1) 

•  Start with memory request by smallest numbered 
thread.  Find the memory segment that contains the 
address (32, 64 or 128 byte segment, depending on 
data type) 

•  Find other active threads requesting addresses 
within that segment and coalesce 

•  Reduce transaction size if possible 
•  Access memory and mark threads as “inactive” 
•  Repeat until all threads in half-warp are serviced 

*Includes Tesla and GTX platforms 
CS6963 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Protocol for most systems (including lab6 
machines) even more restrictive 

•  For compute capability 1.0 and 1.1 
– Threads must access the words in a 

segment in sequence 
– The kth thread must access the kth word 

CS6963 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M0,1 
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Memory Layout of a Matrix in C 
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direction in 
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… 
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Summary of Lecture 

•  Reordering transformations to improve 
locality 
– Tiling, permutation and unroll-and-jam 

•  Matrix multiply example for shared 
memory 

•  Guiding data to be placed in registers 
•  Placing data in texture memory 
•  Introduction to global memory 

bandwidth (if time) 
CS6963 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Next Time 

•  Bandwidth optimizations 
– Global memory access coalescing 
– Avoiding bank conflicts in shared memory 

•  If time permits, cudaProfiler 
– How to tell if your optimizations are 

working 
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