
1/27/10 

1 

L3: Writing Correct
Programs

L3: Wri-ng Correct Programs 

Administrative
•  First assignment out, due Friday at 5PM (extended)

–  Use handin on CADE machines to submit
•  “handin cs6963 lab1 <probfile>”
•  The file <probfile> should be a gzipped tar file of the

CUDA program and output
–  Any questions?

•  Mailing lists now visible:
–  cs6963s10-discussion@list.eng.utah.edu

•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s10-teach@list.eng.utah.edu
•  Please use for questions to Protonu and me

2 
L3: Wri-ng Correct Programs CS6963 

Outline
•  How to tell if your parallelization is correct?
•  Definitions:

–  Race conditions and data dependences
–  Example

•  Reasoning about race conditions
•  A Look at the Architecture:

•  how to protect memory accesses from race conditions?
•  Synchronization within a block: __syncthreads();
•  Synchronization across blocks (through global memory)

–  atomicOperations (example)
–  memoryFences

•  A Few Words about Debugging

3 
L3: Wri-ng Correct Programs CS6963 

What can we do to determine if
parallelization is correct in CUDA?

•  -deviceemu code (to be emulated on host)
–  Support for pthread debugging?

•  Can compare GPU output to CPU output, or
compare GPU output to device emulation output
–  Race condition may still be present

We’ll come back to both of these at the end.

•  Or can (try to) prevent introduction of race
conditions (bulk of lecture)

CS6963 
4 

L3: Wri-ng Correct Programs 

1/27/10 

2 

Reductions (from last time)
•  “Count 6s” example
•  This type of computation is called a parallel

reduction
– Operation is applied to large data structure
– Computed result represents the aggregate solution

across the large data structure
–  Large data structure  computed result (perhaps

single number) [dimensionality reduced]
•  Why might parallel reductions be well-suited

to GPUs?
•  What if we tried to compute the final sum on

the GPUs? (next class and assignment)

CS6963 
5 

L3: Wri-ng Correct Programs 

Reminder: Gathering and Reporting Results
•  Global, device functions and excerpts from host, main

CS6963 

int __host__ void outer_compute  
   (int *h_in_array, int *h_out_array) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_out_array); 

    cudaMemcpy(h_out_array, d_out_array,    
     BLOCKSIZE*sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
  for (int i=0; i<BLOCKSIZE; i++)  
  {  sum+=out_array[i]; } 
  prin_ (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

Compute individual results 
for each thread 

Serialize final results 
gathering on host 

6 
L3: Wri-ng Correct Programs 

What if we computed sum on GPU?
•  Global, device functions and excerpts from host, main

CS6963 

int __host__ void outer_compute  
   (int *h_in_array, int *h_sum) { 
   … 

   compute<<<1,BLOCKSIZE,msize)>>>  
     (d_in_array, d_sum); 
   cudaThreadSynchronize(); 
    cudaMemcpy(h_sum, d_sum,    
     sizeof(int),    
     cudaMemcpyDeviceToHost); 
} 

main(int argc, char **argv) { 
… 
int *sum;  // an integer 
outer_compute(in_array, sum); 
prin_ (”Result = %d\n",sum); 
} 

__device__ int compare(int a, int b) { 
     if (a == b) return 1; 
     return 0; 

} 

__global__ void compute(int *d_in, int 
*sum) { 

  *sum = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      *sum +=    
           compare(val, 6); 

   } 
} 

Each thread increments 
“sum” variable 

7 
L3: Wri-ng Correct Programs 

“Data Race” on sum

load sum 

increment sum 
store sum 

Thread 3 Thread 1 

load sum 
increment sum 
increment sum 

store sum 

sum = 0 
sum = 0 
sum = 1 
sum = 2 

sum = 1 
store<sum,1> 

store<sum,2> 

3  6  6 7  3  5  2 6  0  9  6 3 9  1  7 2 

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12 
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13 
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14 
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15 

} Known as a cyclic data  
distribu-on 

8 
L3: Wri-ng Correct Programs CS6963 

1/27/10 

3 

Threads Access the Same Memory!

•  Global memory and shared memory within an
SM can be freely accessed by multiple
threads

•  Requires appropriate sequencing of memory
accesses across threads to same location if
at least one access is a write

9 
L3: Wri-ng Correct Programs CS6963 

More Formally:
Race Condition or Data Dependence

•  A race condition exists when the result
of an execution depends on the timing
of two or more events.

•  A data dependence is an ordering on a
pair of memory operations that must be
preserved to maintain correctness.

L3: Wri-ng Correct Programs CS6963 

Data Dependence

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same
program statement.

•  Two important uses of data dependence information (among others):
Parallelization: no data dependence between two computations 
 parallel execution safe
Locality optimization: absence of data dependences & presence of
 reuse  reorder memory accesses for
 better data locality (next week)

11 
L3: Wri-ng Correct Programs CS6963 

Data Dependence of Scalar
Variables

True (flow) dependence
 a =
 = a

Anti-dependence
 = a
 a =

Output dependence
 a =
 a =

Input dependence (for locality)
 = a

 = a

Definition: Data dependence exists from a reference
instance i to i’ iff
 either i or i’ is a write operation
 i and i’ refer to the same variable
 i executes before i’

12 
L3: Wri-ng Correct Programs CS6963 

1/27/10 

4 

Some Definitions (from Allen & Kennedy)
•  Definition 2.5:

–  Two computations are equivalent if, on the same inputs,
•  they produce identical outputs
•  the outputs are executed in the same order

•  Definition 2.6:
–  A reordering transformation

•  changes the order of statement execution
•  without adding or deleting any statement executions.

•  Definition 2.7:
–  A reordering transformation preserves a dependence if

•  it preserves the relative execution order of the dependences’
source and sink.

CS6963 
13 

L3: Wri-ng Correct Programs 

Reference: “Op-mizing Compilers for Modern Architectures:  A Dependence‐Based 
Approach”, Allen and Kennedy, 2002, Ch. 2.  

Fundamental Theorem of
Dependence

•  Theorem 2.2:
–  Any reordering transformation that preserves every dependence in

a program preserves the meaning of that program.
•  Now we will discuss abstractions and algorithms to

determine whether reordering transformations preserve
dependences...

14 
L3: Wri-ng Correct Programs CS6963 

Parallelization as a Reordering
Transformation in CUDA

__host callkernel() {

 dim3 blocks(bx,by);

 dim3 threads(tx,ty,tz);

 …
kernelcode<<<blocks,threads>>>(<a
rgs>);

}

__global kernelcode(<args>) {

 /* code refers to threadIdx.x,
threadIdx.y, threadIdx.z, blockIdx.x,
blockIdx.y */

}

__host callkernel() {

for (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

for (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

for (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

for (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

for (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

EQUIVALENT?
15 

L3: Wri-ng Correct Programs CS6963 

Forall (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering
transformation)

Example
 forall (i=1; i<=n; i++)
 A[i] = B[i] + C[i];

Meaning?

Consider Parallelizable Loops

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel
programming models?

16 
L3: Wri-ng Correct Programs CS6963 

1/27/10 

5 

CUDA Equivalent to “Forall”

__host callkernel() {

forall (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

forall (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

forall (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

forall (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

forall (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

17 
L3: Wri-ng Correct Programs CS6963 

Using Data Dependences to Reason
about Race Conditions

•  Compiler research on data dependence
analysis provides a systematic way to
conservatively identify race conditions
on scalar and array variables
– “Forall” if no dependences cross the

iteration boundary of a parallel loop. (no
loop-carried dependences)

– If a race condition is found, either serialize
loop(s) carrying dependence, or add
“synchronization”

18 
L3: Wri-ng Correct Programs CS6963 

Back to our Example: What if Threads
Need to Access Same Memory Location

•  Dependence on sum across iterations/threads
–  But reordering ok since operations on sum are associative

•  Load/increment/store must be done atomically to
preserve sequential meaning

•  Add Synchronization
–  Protect memory locations
–  Control-based (what are threads doing?)

•  Definitions:
–  Atomicity: a set of operations is atomic if either they all

execute or none executes. Thus, there is no way to see the
results of a partial execution.

–  Mutual exclusion: at most one thread can execute the code
at any time

–  Barrier: forces threads to stop and wait until all threads
have arrived at some point in code, and typically at the same
point

19 
L3: Wri-ng Correct Programs CS6963 

A Look at the Architecture

•  What makes it convenient
in hardware to efficiently
synchronize within
blocks?

•  And not between blocks?

Device 

Mul*processor N 

Mul*processor 2 
Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

•  Consider device consists
of replicated streaming
multiprocessors

•  And shared instruction
unit in SIMD architecture
of streaming
multiprocessor

20 
L3: Wri-ng Correct Programs CS6963 

1/27/10 

6 

Gathering Results on GPU:
Barrier Synchronization w/in Block

void __syncthreads();
•  Functionality: Synchronizes all threads in a block

–  Each thread waits at the point of this call until all
other threads have reached it

–  Once all threads have reached this point, execution
resumes normally

•  Why is this needed?
–  A thread can freely read the shared memory of its

thread block or the global memory of either its
block or grid.

–  Allows the program to guarantee partial ordering of
these accesses to prevent incorrect orderings.

•  Watch out!
–  Potential for deadlock when it appears in

conditionals

CS6963 
21 

L3: Wri-ng Correct Programs 

Gathering Results on GPU for “Count 6”
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

 __syncthreads(); 
   if (threadIdx.x == 0) { 
     for 0..BLOCKSIZE‐1 

     *d_sum += d_out[i];         
   } 

22 
L3: Wri-ng Correct Programs 

Gathering Results on GPU:
Atomic Update to Sum Variable

int atomicAdd(int* address, int val);
 Increments the integer at address by val.

Atomic means that once initiated, the
operation executes to completion
without interruption by other threads

CS6963 
23 

L3: Wri-ng Correct Programs 

Gathering Results on GPU for “Count 6”
__global__ void compute(int *d_in, int 
*d_out) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 
} 

CS6963 

__global__ void compute(int *d_in, int 
*d_out, int *d_sum) { 

  d_out[threadIdx.x] = 0; 

  for (i=0; i<SIZE/BLOCKSIZE; i++) {    

      int val = d_in[i*BLOCKSIZE +    
 threadIdx.x];   

      d_out[threadIdx.x] +=    
           compare(val, 6); 

   } 

} 

atomicAdd(d_sum,  
                    d_out_array[threadIdx.x]);   

24 
L3: Wri-ng Correct Programs 

1/27/10 

7 

Available Atomic Functions
All but CAS take two operands (unsigned int *address, int (or other type) val);

Arithmetic:
•  atomicAdd() – add val to address
•  atomicSub() – subtract val from address
•  atomicExch() – exchange val at address, return old value
•  atomicMin()
•  atomicMax()
•  atomicInc()
•  atomicDec()
•  atomicCAS()

Bitwise Functions:
•  atomicAnd()
•  atomicOr()
•  atomicXor()
See Appendix B10 of NVIDIA CUDA Programming Guide 

25 
L3: Wri-ng Correct Programs CS6963 

Synchronization Within/Across Blocks:
Memory Fence Instructions

void __threadfence_block();
•  waits until all global and shared memory accesses made by the

calling thread prior to __threadfence_block() are visible to all
threads in the thread block. In general, when a thread issues a
series of writes to memory in a particular order, other threads
may see the effects of these memory writes in a different
order.

void __threadfence();
•  waits until all global and shared memory accesses made by the

calling thread prior to __threadfence() are visible to all threads
in the device for global memory accesses and all threads in the
thread block for shared memory accesses.

Appendix B.5 of NVIDIA CUDA 2.3 Programming Manual 
26 

L3: Wri-ng Correct Programs CS6963 

Memory Fence Example
__device__ unsigned int count = 0; 
__shared__ bool isLastBlockDone; 
__global__ void sum(const float* array,  
                            unsigned int N, float* result) { 
// Each block sums a subset of the input array 
float par-alSum = calculatePar-alSum(array, N); 
if (threadIdx.x == 0) { 
   // Thread 0 of each block stores the par-al sum 
   // to global memory 
   result[blockIdx.x] = par-alSum; 

   // Thread 0 makes sure its result is visible to 
   // all other threads 
   __threadfence(); 

   // Thread 0 of each block signals that it is done 
   unsigned int value = atomicInc(&count, gridDim.x); 

    // Thread 0 of each block determines if its block is 
   // the last block to be done 
   isLastBlockDone = (value == (gridDim.x ‐ 1)); 
} 

// Synchronize to make sure that each thread 
// reads the correct value of isLastBlockDone 
__syncthreads(); 

if (isLastBlockDone) { 
   // The last block sums the par-al sums 
   // stored in result[0 .. gridDim.x‐1] 
   float totalSum = calculateTotalSum(result); 

   if (threadIdx.x == 0) { 
      // Thread 0 of last block stores total sum 
      // to global memory and resets count so that 
      // next kernel call works properly 
      result[0] = totalSum; 
      count = 0; 
   } 
} 

} 

27 
L3: Wri-ng Correct Programs 

Make sure write to 
result complete 
before con-nuing 

Debugging: Using Device Emulation Mode
•  An executable compiled in device emulation

mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  When running in device emulation mode, one can:
–  Use host native debug support (breakpoints,

inspection, etc.)
–  Access any device-specific data from host code

and vice-versa
–  Call any host function from device code (e.g.

printf) and vice-versa
–  Detect deadlock situations caused by improper

usage of __syncthreads

28 
L3: Wri-ng Correct Programs 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign

1/27/10 

8 

Debugging: Device Emulation Mode Pitfalls
•  Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location by
multiple threads could produce different results.

•  Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

•  Results of floating-point computations will slightly
differ because of:
–  Different compiler outputs, instruction sets
–  Use of extended precision for intermediate results

•  There are various options to force strict single
precision on the host

29 
L3: Wri-ng Correct Programs 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign

Debugging: Run-time functions & macros for
error checking

In CUDA run-time services,
 cudaGetDeviceProperties(deviceProp &dp, d);
 check number, type and whether device present

In libcutil.a of Software Developers’ Kit,
 cutComparef (float *ref, float *data, unsigned len);
 compare output with reference from CPU implementation

In cutil.h of Software Developers’ Kit (with #define
_DEBUG or –D_DEBUG compile flag),
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
 check for error in run-time call and exit if error detected
CUT_SAFE_MALLOC(cudaMalloc(<args>));
 similar to above, but for malloc calls
CUT_CHECK_ERROR(“error message goes here”);

 check for error immediately following kernel execution and
if detected, exit with error message

CS6963 
30 

L3: Wri-ng Correct Programs 

Summary of Lecture
•  Data dependence can be used to determine the

safety of reordering transformations such as parallelization
•  preserving dependences = preserving “meaning”

•  In the presence of dependences, synchronization is
needed to guarantee safe access to memory

•  Synchronization mechanisms on GPUs:
–  __syncthreads() barrier within a block
–  Atomic functions on locations in memory across blocks
–  Memory fences within and across blocks

•  Debugging your code
–  Execute single-threaded in device emulation mode on host
–  Compare results to “gold” version implemented on host
–  Other run-time libraries to detect failures
–  More next week on feedback from the compiler

31 
L3: Wri-ng Correct Programs CS6963 

Next Week
•  Managing the memory hierarchy

– Structure of memory system
– Restrictions on use of different memories
– Data locality to reduce memory latency
– Bandwidth optimizations to reduce memory

traffic
•  Assignment 2

32 
L3: Wri-ng Correct Programs CS6963 

