
4/5/10

1

CS6963

L17: Asynchronous
Concurrent
Execution,

Open GL Rendering

L17: Asynchronous xfer & Open GL
2 CS6963

Administrative
• Midterm

-  In class April 5, open notes
-  Review notes, readings and Lecture 15

• Project Feedback
-  Everyone should have feedback from me
-  Follow up later today on a few responses

• Design Review
-  Intermediate assessment of progress on project (next slide)
- Due Monday, April 12, 5PM
- Sign up on doodle.com poll http://doodle.com/24rm4guxtw2kchwe

• Final projects
-  Poster session, April 28 (dry run April 26)
-  Final report, May 5

L17: Asynchronous xfer & Open GL
3 CS6963

Design Reviews
• Goal is to see a solid plan for each project and make

sure projects are on track
-  Plan to evolve project so that results guaranteed
- Show at least one thing is working
- How work is being divided among team members

• Major suggestions from proposals
-  Project complexity – break it down into smaller chunks with

evolutionary strategy
- Add references – what has been done before? Known

algorithm? GPU implementation?
-  In some cases, claim no communication but it seems needed

to me

L17: Asynchronous xfer & Open GL
4 CS6963

Design Reviews
• Oral, 10-minute Q&A session (April 14 in class, April 13/14

office hours, or by appointment)
-  Each team member presents one part
- Team should identify “lead” to present plan

• Three major parts:
I.  Overview
- Define computation and high-level mapping to GPU
II.  Project Plan
-  The pieces and who is doing what.
-  What is done so far? (Make sure something is working by

the design review)
III. Related Work
-  Prior sequential or parallel algorithms/implementations
-  Prior GPU implementations (or similar computations)

• Submit slides and written document revising proposal that
covers these and cleans up anything missing from proposal.

4/5/10

2

L17: Asynchronous xfer & Open GL
5 CS6963

Final Project Presentation
• Dry run on April 26

-  Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2’x3’ poster,

or bring your own poster.

• Poster session during class on April 28
-  Invite your friends, profs who helped you, etc.

• Final Report on Projects due May 5
- Submit code
- And written document, roughly 10 pages, based on earlier

submission.
-  In addition to original proposal, include

-  Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
-  Performance Measurement
- Related Work (from DR)

L17: Asynchronous xfer & Open GL
6 CS6963

Sources for Today’s Lecture
• Presentation (possibly related to particle project in SDK)

http://www.nvidia.com/content/cudazone/download/
Advanced_CUDA_Training_NVISION08.pdf

 This presentation also talks about finite differencing
and molecular dynamics.

• Asynchronous copies in CUDA Software Developer Kit
called asyncAPI, bandwidthTest

•  Chapter 3.2.6 in CUDA 3.0 Programmer’s Guide
• Chapter 3.2.7.1 for Open GL interoperability

L17: Asynchronous xfer & Open GL
7 CS6963

Overview of Concurrent Execution
• Review semantics of kernel launch
• Key performance consideration of using GPU as

accelerator?
-  COPY COST!!!

• Some applications are data intensive, and even large
device memories are too small to hold data

- Appears to be a feature of some of your projects, and
probably of the MRI application we studied

• Concurrent operation available on newer GPUs
- Overlapping Data Transfer and Kernel Execution
-  Concurrent Kernel Execution
-  Concurrent Data Transfers

L17: Asynchronous xfer & Open GL
8 CS6963

Review from L2: Semantics of Kernel Launch

• Kernel launch is asynchronous (> CC 1.1), synchronize at end
• Timing example (excerpt from simpleStreams in CUDA SDK):

• A bunch of runs in a row example (excerpt from transpose in
CUDA SDK)

cudaEvent_t start_event, stop_event;
cudaEventCreate(&start_event);
cudaEventCreate(&stop_event);
cudaEventRecord(start_event, 0);
 init_array<<<blocks, threads>>>(d_a, d_c, niterations);
 cudaEventRecord(stop_event, 0);
 cudaEventSynchronize(stop_event);
 cudaEventElapsedTime(&elapsed_time, start_event, stop_event);

for (int i = 0; i < numIterations; ++i) {
 transpose<<< grid, threads >>>(d_odata, d_idata, size_x, size_y);
}
cudaThreadSynchronize();

4/5/10

3

L17: Asynchronous xfer & Open GL
9 CS6963

Optimizing Host-Device Transfers
• Host-Device Data Transfers

- Device to host memory bandwidth much lower than device to
device bandwidth

-  8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak (Tesla
C1060)

• Minimize transfers
-  Intermediate data can be allocated, operated on, and

deallocated without ever copying them to host memory

• Group transfers
- One large transfer much better than many small ones

Slide source: Nvidia, 2008
L17: Asynchronous xfer & Open GL

10 CS6963

Asynchronous Copy To/From Host
(compute capability 1.1 and above)

• Warning: I have not tried this, and could not find a
lot of information on it.

• Concept:
- Memory bandwidth can be a limiting factor on GPUs
- Sometimes computation cost dominated by copy cost
-  But for some computations, data can be “tiled” and

computation of tiles can proceed in parallel (some of our
projects)

-  Can we be computing on one tile while copying another?

• Strategy:
- Use page-locked memory on host, and asynchronous copies
-  Primitive cudaMemcpyAsync
-  Effect is GPU performs DMA from Host Memory
- Synchronize with cudaThreadSynchronize()

L17: Asynchronous xfer & Open GL
11 CS6963

Copying from Host to Device
• cudaMemcpy(dst, src, nBytes, direction)

•  Can only go as fast as the PCI-e bus and not eligible for
asynchronous data transfer

• cudaMallocHost(…): Page-locked host memory
- Use this in place of standard malloc(…) on the host
-  Prevents OS from paging host memory
- Allows PCI-e DMA to run at full speed

• Asynchronous data transfer
-  Requires page-locked host memory

• Enables highest cudaMemcpy performance
-  3.2 GB/s on PCI-e x16 Gen1
-  5.2 GB/s on PCI-e x16 Gen2

• See bandwidthTest in SDK
L17: Asynchronous xfer & Open GL

12 CS6963

What does Page-Locked Host Memory Mean?
• How the Async copy works:

- DMA performed by GPU memory controller
-  CUDA driver takes virtual addresses and translates them to

physical addresses
- Then copies physical addresses onto GPU
- Now what happens if the host OS decides to swap out the

page???

• Special malloc holds page in place on host
-  Prevents host OS from moving the page
-  CudaMallocHost()

• But performance could degrade if this is done on lots
of pages!

-  Bypassing virtual memory mechanisms

4/5/10

4

L17: Asynchronous xfer & Open GL
13 CS6963

Example of Asynchronous Data Transfer

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(…);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(…);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream2 identify streams associated with asynchronous
call (note 4th “parameter” to kernel invocation)

L17: Asynchronous xfer & Open GL
14 CS6963

Code from asyncAPI SDK project
// allocate host memory
CUDA_SAFE_CALL(cudaMallocHost((void**)&a, nbytes));
memset(a, 0, nbytes);

// allocate device memory
CUDA_SAFE_CALL(cudaMalloc((void**)&d_a, nbytes));
CUDA_SAFE_CALL(cudaMemset(d_a, 255, nbytes));

… // declare grid and thread dimensions and create start and stop events

// asynchronously issue work to the GPU (all to stream 0)
cudaEventRecord(start, 0);
cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHostToDevice, 0);
increment_kernel<<<blocks, threads, 0, 0>>>(d_a, value);
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0);
cudaEventRecord(stop, 0);

// have CPU do some work while waiting for GPU to finish

// release resources
CUDA_SAFE_CALL(cudaFreeHost(a));
CUDA_SAFE_CALL(cudaFree(d_a));

L17: Asynchronous xfer & Open GL
15 CS6963

Tiling Idea
Use tiling to manage data too large to fit into GPU

for each pair of tiles (make sure not to go off end)
 if (not first iteration) synchronize for stream1
 Initiate copy for stream1 into GPU
 Launch kernel for stream1

 if (not first iteration) synchronize for stream2
 Initiate copy for stream2
 Launch kernel for stream2

 // Clean up
Last tile, final synchronization

L17: Asynchronous xfer & Open GL
16 CS6963

Concurrent Kernel Execution
(compute capability 2.0)

• NOTE: Not available in current systems!
• Execute multiple kernels concurrently
• Upper limit is 4 kernels at a time
• Keep in mind, sharing of all resources between

kernels may limit concurrency and its profitability

4/5/10

5

L17: Asynchronous xfer & Open GL
17 CS6963

Concurrent Data Transfers
(compute capability 2.0)

• NOTE: Not available in current systems!
• Can concurrently copy from host to GPU and GPU to

host using asynchronous Memcpy

L17: Asynchronous xfer & Open GL
18 CS6963

A Few More Details
• Only available in “some” more recent architectures
• Does your device support cudaMemCpyAsync?

-  Call cudaGetDeviceProperties()
-  Check the deviceOverlap property

• Does your device support concurrent kernel execution
-  Call cudaGetDeviceProperties()
-  Check the concurrentKernels property

L17: Asynchronous xfer & Open GL
19 CS6963

2. OpenGL Rendering
• OpenGL buffer objects can be mapped into the CUDA

address space and then used as global memory
- Vertex buffer objects
-  Pixel buffer objects

• Allows direct visualization of data from computation
- No device to host transfer
- Data stays in device memory –very fast compute / viz
- Automatic DMA from Tesla to Quadro (via host for now)

•  Data can be accessed from the kernel like any other global data
(in device memory)

L17: Asynchronous xfer & Open GL
20 CS6963

OpenGL Interoperability
1. Register a buffer object with CUDA

-  cudaGLRegisterBufferObject(GLuintbuffObj);
- OpenGL can use a registered buffer only as a source
- Unregister the buffer prior to rendering to it by OpenGL

2. Map the buffer object to CUDA memory
-  cudaGLMapBufferObject(void**devPtr, GLuintbuffObj);
-  Returns an address in global memory Buffer must be registered

prior to mapping
3. Launch a CUDA kernel to process the buffer
•  Unmap the buffer object prior to use by OpenGL

-  cudaGLUnmapBufferObject(GLuintbuffObj);
4. Unregister the buffer object

-  cudaGLUnregisterBufferObject(GLuintbuffObj);
- Optional: needed if the buffer is a render target

5. Use the buffer object in OpenGL code

4/5/10

6

L17: Asynchronous xfer & Open GL
21 CS6963

Example from simpleGL in SDK
1. GL calls to create and initialize buffer, then registered

with CUDA:
// create buffer object
glGenBuffers(1, vbo);
glBindBuffer(GL_ARRAY_BUFFER, *vbo);

// initialize buffer object
unsigned int size = mesh_width * mesh_height * 4 * sizeof(float)*2;
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

// register buffer object with CUDA
cudaGLRegisterBufferObject(*vbo);

L17: Asynchronous xfer & Open GL
22 CS6963

2. Map OpenGL buffer object for writing from CUDA
float4 *dptr;
cudaGLMapBufferObject((void**)&dptr, vbo));
3. Execute the kernel to compute values for dptr
dim3 block(8, 8, 1);
dim3 grid(mesh_width / block.x, mesh_height /

block.y, 1);
kernel<<< grid, block>>>(dptr, mesh_width,

mesh_height, anim);
4. Unregister the OpenGL buffer object and return to

Open GL
 cudaGLUnmapBufferObject(vbo);

Example from simpleGL in SDK, cont.

L17: Asynchronous xfer & Open GL
23 CS6963

Next Week
• Exam on Monday
• Sorting algorithms / Open CL?

