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L12: Sparse Linear Algebra 
on GPUs 

CS6963 

Administrative Issues  
•  Next assignment, triangular solve  

– Due 5PM, Monday, March 8 
–  handin cs6963 lab 3 <probfile>”  

•  Project proposals 
– Due 5PM, Wednesday, March 17 (hard 

deadline) 
– handin cs6963 prop <pdffile> 
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Outline 
•  ProjectA  

•  A few more suggested topics 
•  Sparse Linear Algebra 
•  Readings: 

–  “Implementing Sparse Matrix-Vector Multiplication on Throughput Oriented 
Processors,” Bell and Garland (Nvidia), SC09, Nov. 2009. 

–  “Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs”, Choi, 
Singh, Vuduc, PPoPP 10, Jan. 2010. 

–  “Optimizing sparse matrix-vector multiply on emerging multicore platforms,” 
Journal of Parallel Computing, 35(3):178-194, March 2009. (Expanded from 
SC07 paper.)  
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More Project Ideas 
•  Suggestions from Kris Sikorski: 

– Singular value decomposition 
– Newton’s method 
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Sparse Linear Algebra 
•  Suppose you are applying matrix-vector 

multiply and the matrix has lots of zero 
elements 
– Computation cost?  Space requirements? 

•  General sparse matrix representation 
concepts 
– Primarily only represent the nonzero data 

values 
– Auxiliary data structures describe 

placement of nonzeros in “dense matrix”  
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GPU Challenges 
•  Computation partitioning? 
•  Memory access patterns? 
•  Parallel reduction 

BUT, good news is that sparse linear 
algebra performs TERRIBLY on 
conventional architectures, so poor 
baseline leads to improvements!   
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Some common representations 
 1 7 0 0 
 0 2 8 0 
 5 0 3 9 
 0 6 0 4 

[ ] A = 

data =  
 *  1 7 
 *  2 8 
 5 3 9 
 6 4 * 

[ ] 
 1 7 * 
 2 8 * 
 5 3 9 
 6 4 * 

[ ]  0 1 * 
 1 2 * 
 0 2 3 
 1 3 * 

[ ] 

offsets = [-2 0 1]  

data =  indices =  

ptr =        [0 2 4 7 9] 
indices = [0 1 1 2 0 2 3 1 3] 
data =     [1 7 2 8 5 3 9 6 4] 

row =       [0 0 1 1 2 2 2 3 3] 
indices =  [0 1 1 2 0 2 3 1 3] 
data =      [1 7 2 8 5 3 9 6 4] 

DIA: Store elements along a set of diagonals. 

Compressed Sparse Row (CSR): 
Store only nonzero elements, with 
“ptr” to beginning of each row and 
“indices” representing column.  

ELL: Store a set of K elements per row and 
pad as needed. Best suited when number 
non-zeros roughly consistent across rows. 

COO: Store nonzero elements and 
their corresponding “coordinates”.  

CSR Example 
for (j=0; j<nr; j++) {                                                       
    for (k = ptr[j]; k<ptr[j+1]-1; k++)  
      t[j] = t[j] + data[k] * x[indices[k]]; 
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Summary of Representation 
and Implementation 

                  Bytes/Flop 
Kernel     Granularity     Coalescing     32-bit     64-bit 
DIA        thread : row       full               4               8 
ELL         thread : row       full               6              10 
CSR(s)    thread : row       rare              6              10 
CSR(v)    warp : row          partial           6              10 
COO       thread : nonz     full                8               12 
HYB       thread : row       full                6               10 

Table 1 from Bell/Garland: Summary of SpMV kernel 
properties. 
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Other Representation Examples 
•  Blocked CSR 

–  Represent non-zeros as a set of blocks, usually of 
fixed size 

–  Within each block, treat as dense and pad block 
with zeros 

–  Block looks like standard matvec 
–  So performs well for blocks of decent size 

•  Hybrid ELL and COO 
–  Find a “K” value that works for most of matrix 
–  Use COO for rows with more nonzeros (or even 

significantly fewer) 
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Stencil Example 
What is a 3-point stencil? 5-point stencil? 

7-point?  9-point?  27-point? 
How is this represented by a sparse 

matrix? 
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Stencil Result  
(structured matrices) 

See Figures 11 and 12, Bell and Garland 
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Unstructured Matrices 
See Figures 13 and 14 
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PPoPP paper 
•  What if you customize the 

representation to the problem? 
•  Additional global data structure 

modifications (like blocked 
representation)? 

•  Strategy 
– Apply models and autotuning to identify 

best solution for each application 
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Summary of Results 
BELLPACK (blocked ELLPACK) achieves up 

to 29 Gflop/s in SP and 15.7 Gflop/s in 
DP 

Up to 1.8x and 1.5x improvement over Bell 
and Garland. 
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This Lecture 
•  Exposure to the issues in a sparse 

matrix vector computation on GPUs 
•  A set of implementations and their 

expected performance 
•  A little on how to improve performance 

through application-specific knowledge 
and customization of sparse matrix 
representation 
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What’s Coming 
•  Before Spring Break  

– Two application case studies from newly 
published Kirk and Hwu 

– Review for Midterm (week after spring 
break) 

CS6963 
17

L12: Sparse Linear Algebra 


