
3/10/10

1

L12: Sparse Linear Algebra
on GPUs

CS6963 

Administrative Issues
•  Next assignment, triangular solve

– Due 5PM, Monday, March 8
–  handin cs6963 lab 3 <probfile>”

•  Project proposals
– Due 5PM, Wednesday, March 17 (hard

deadline)
– handin cs6963 prop <pdffile>

CS6963 
2

L12: Sparse Linear Algebra 

Outline
•  ProjectA

•  A few more suggested topics
•  Sparse Linear Algebra
•  Readings:

–  “Implementing Sparse Matrix-Vector Multiplication on Throughput Oriented
Processors,” Bell and Garland (Nvidia), SC09, Nov. 2009.

–  “Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs”, Choi,
Singh, Vuduc, PPoPP 10, Jan. 2010.

–  “Optimizing sparse matrix-vector multiply on emerging multicore platforms,”
Journal of Parallel Computing, 35(3):178-194, March 2009. (Expanded from
SC07 paper.)

CS6963 
3

L12: Sparse Linear Algebra 

More Project Ideas
•  Suggestions from Kris Sikorski:

– Singular value decomposition
– Newton’s method

4

L12: Sparse Linear Algebra 

CS6963 

3/10/10

2

Sparse Linear Algebra
•  Suppose you are applying matrix-vector

multiply and the matrix has lots of zero
elements
– Computation cost? Space requirements?

•  General sparse matrix representation
concepts
– Primarily only represent the nonzero data

values
– Auxiliary data structures describe

placement of nonzeros in “dense matrix”
5

L12: Sparse Linear Algebra 
CS6963 

GPU Challenges
•  Computation partitioning?
•  Memory access patterns?
•  Parallel reduction

BUT, good news is that sparse linear
algebra performs TERRIBLY on
conventional architectures, so poor
baseline leads to improvements!

6

L12: Sparse Linear Algebra 

CS6963 

Some common representations
 1 7 0 0
 0 2 8 0
 5 0 3 9
 0 6 0 4

[] A =

data =
 * 1 7
 * 2 8
 5 3 9
 6 4 *

[]
 1 7 *
 2 8 *
 5 3 9
 6 4 *

[] 0 1 *
 1 2 *
 0 2 3
 1 3 *

[]

offsets = [-2 0 1]

data = indices =

ptr = [0 2 4 7 9]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

row = [0 0 1 1 2 2 2 3 3]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

DIA: Store elements along a set of diagonals.

Compressed Sparse Row (CSR):
Store only nonzero elements, with
“ptr” to beginning of each row and
“indices” representing column.

ELL: Store a set of K elements per row and
pad as needed. Best suited when number
non-zeros roughly consistent across rows.

COO: Store nonzero elements and
their corresponding “coordinates”.

CSR Example
for (j=0; j<nr; j++) {
 for (k = ptr[j]; k<ptr[j+1]-1; k++)
 t[j] = t[j] + data[k] * x[indices[k]];

8

L12: Sparse Linear Algebra 

CS6963 

3/10/10

3

Summary of Representation
and Implementation

 Bytes/Flop
Kernel Granularity Coalescing 32-bit 64-bit
DIA thread : row full 4 8
ELL thread : row full 6 10
CSR(s) thread : row rare 6 10
CSR(v) warp : row partial 6 10
COO thread : nonz full 8 12
HYB thread : row full 6 10

Table 1 from Bell/Garland: Summary of SpMV kernel
properties.

9

L12: Sparse Linear Algebra 

CS6963 

Other Representation Examples
•  Blocked CSR

–  Represent non-zeros as a set of blocks, usually of
fixed size

–  Within each block, treat as dense and pad block
with zeros

–  Block looks like standard matvec
–  So performs well for blocks of decent size

•  Hybrid ELL and COO
–  Find a “K” value that works for most of matrix
–  Use COO for rows with more nonzeros (or even

significantly fewer)

10

L12: Sparse Linear Algebra 

CS6963 

Stencil Example
What is a 3-point stencil? 5-point stencil?

7-point? 9-point? 27-point?
How is this represented by a sparse

matrix?

11

L12: Sparse Linear Algebra 

CS6963 

Stencil Result
(structured matrices)

See Figures 11 and 12, Bell and Garland

12

L12: Sparse Linear Algebra 

CS6963 

3/10/10

4

Unstructured Matrices
See Figures 13 and 14

13

L12: Sparse Linear Algebra 

CS6963 

PPoPP paper
•  What if you customize the

representation to the problem?
•  Additional global data structure

modifications (like blocked
representation)?

•  Strategy
– Apply models and autotuning to identify

best solution for each application

14

L12: Sparse Linear Algebra 

CS6963 

Summary of Results
BELLPACK (blocked ELLPACK) achieves up

to 29 Gflop/s in SP and 15.7 Gflop/s in
DP

Up to 1.8x and 1.5x improvement over Bell
and Garland.

15

L12: Sparse Linear Algebra 

CS6963 

This Lecture
•  Exposure to the issues in a sparse

matrix vector computation on GPUs
•  A set of implementations and their

expected performance
•  A little on how to improve performance

through application-specific knowledge
and customization of sparse matrix
representation

16

L12: Sparse Linear Algebra 

CS6963 

3/10/10

5

What’s Coming
•  Before Spring Break

– Two application case studies from newly
published Kirk and Hwu

– Review for Midterm (week after spring
break)

CS6963 
17

L12: Sparse Linear Algebra 

