3/1/10

L10: Dense Linear Algebra on
GPUs

THE
CS6963 u UNIVERSITY
OF UTAH

Administrative Issues

* Next assignment, triangular solve
— Due 5PM, Friday, March b
— handin cs6963 lab 3 <probfile>"
* Project proposals (discussed today)
— Due 5PM, Wednesday, March 17 (hard
deadline)
— A few minutes at end of class to help form
groups

5 THE
€56963 L10: Dense Linear Algebra u 8‘: [L}/-rEARrS(ITY

Outline

+ Triangular solve assignment

* Project
— Ideas on how to approach
— Construct list of questions

Reading:
Paper: Volkov, V., and Demmel, J. W. 2008.
Benchmarking GPUs to tune dense linear algebra, SC08,
November 2008.
Paper link: http://portal.acm.org/citation.cfm?id=1413402
Talk link: http://www.eecs.berkeley.edu/~volkov/volkov08-
sc08talk.pdf
Volkov code:
http://forums.nvidia.com/index.php?
showtopic=476894&st=404&p=3140148#entry314014

CS6963

THE
u UNIVERSITY
OF UTAH

3
L10: Dense Linear Algebra

Triangular Solve (STRSM)

for (j=0: j<n: j++)
for (k= 0; k < n; k++)
if (B[j*n+k] != 0.0f) {
for (i = ktl; i < n; i++)
B[j*n+i]-= A[k* n+i]* B[j* n+Kk]
}
Equivalent to:
cublasStrsm('l' /* left operator */, 'I' /* lower triangular */,
'N' /* not transposed */,'u' /* unit triangular */,
N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f

4 THE
€56963 L10: Dense Linear Algebra u 8‘: [L}/-rEARrS(ITY

3/1/10

Assignment

+ Details:
— Integrated with simpleCUBLAS test in SDK
— Reference sequential version provided

1. Rewrite in CUDA

2. Compare performance with CUBLAS 2.0
library

- 5
€S6963
696 L10: Dense Linear Algebra

THE
U UNIVERSITY
OF UTAH

CS6963

Performance Issues?

+ Abundant data reuse
- Difficult edge cases

- Different amounts of work for
different <j,k> values

- Complex mapping or load imbalance

THE
u UNIVERSITY
OF UTAH

6
L10: Dense Linear Algebra

Reminder: Outcomes from Last Year's Course

+ Paper and poster at Symposium on Application Accelerators
for High-Performance Computing
http://saahpc.ncsa.illinois.edu/09/ (May 4, 2010 submission
deadline)

— Poster:

Assembling Large Mosaics of Electron Microscope Images using GPU -
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, and
Mary Hall

— Paper:
GPU Acceleration of the Generalized Interpolation Material Point Method
Wei-Fan Chiang, Michael DeLisi, Todd Hummel, Tyler Prete, Kevin Tew,
Mary Hall, Phil Wallstedt, and James Guilkey
+ Poster at NVIDIA Research Summit
http://www.nvidia.com/object/gpu_tech_conf_research_summit.html
Poster #47 - Fu, Zhisong, University of Utah (United States)
Solvi ikonal Equations on Triangulated Surface Mesh with CUDA
+ Posters at Industrial Advisory Board meeting
+ Integrated into Masters theses and PhD dissertations
+ Jobs and internships

) , THE
€S6963 L10: Dense Linear Algebra US'E‘B’TEA‘S”Y

CS6963

Projects
2-3 person teams
Select project, or I will guide you
— From your research
— From previous classes
— Suggested ideas from faculty, Nvidia (ask me)
Example (published):

— http://saahpc.nesa.illinois.edu/09/papers/Chiang_paper.pdf
(see prev slide)

Steps

1. Proposal (due Wednesday, March 17)

2. Design Review (in class, April 5 and 7)

3. Poster Presentation (last week of classes)
4

Final Report (due before finals)
UH!IEIIVERSITY
OF UTAH

8
L10: Dense Linear Algebra

3/1/10

1. Project Proposal (due 3/17)

* Proposal Logistics:
— Significant implementation, worth 55% of grade
— Each person turns in the proposal (should be same
as other team members)
* Proposal:
— 3-4 page document (11pt, single-spaced)
— Submit with handin program:
“handin cs6963 prop <pdf-file>"

N THE
CS6963 L10: Dense Linear Algebra US'E‘{}’R‘S”Y

Content of Proposal

I. Team members: Name and a sentence on expertise for each member
II. Problem description
- What is the computation and why is it important?
- Abstraction of computation: equations, graphic or pseudo-code, no more
than 1 page
III. Suitability for GPU acceleration
- Amdahl's Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.
- Synchronization and Communication: Discuss what data structures may

need to be protected by synchronization, or communication through
host.

- Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV. Intellectual Challenges
- Generally, what makes this computation worthy of a project?

- Point to any difficulties you anticipate at present in achieving high
speedup

; 10 "ThE
(56963 L10: Dense Linear Algebra u R

Reminder from L5: Matrix
Multiplication in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) k

for (inti = 0; i < Width; ++i)
for (intj = 0; j < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + Kk];
double b = N[k * width + JJ;
sum+=a*b;

}
P[i * Width + j] = sum;

THE
u UNIVERSITY
OF UTAH

1
L10: Dense Linear Algebra

Tiled Matrix Multiply Using Thread Blocks

+ One computes one square sub-
ma‘rr‘ix PSUb Of size BLOCK_SIZE 012 tx bsize-1
+ One thread computes one element —

of Py ‘
+ Assume that the dimensions of M

and N are multiples of

BLOCK_SIZE and square shape ‘

0
1
2

y
bsize-1

12 H{IEIIVERSITY
L10: Dense Linear Algebra u OF UTAH

3/1/10

GEMM on Current CPUs and GPUs
(Intel multicores and NVIDIA GPUs)

a75
350
325
%) 300
= s M Intel Xeon Harpertown
QL (2x4@2.33GHz)
o ™ Quadro FX 5600
. (120 @ 1.5 GHz)
o 2 Intel Xeon Tigerton
175 (4x 4@ 2.4 GHz)
150 2 M GeForce GTX 280
125 2 (240 @ 1.29 GHz)
100 =
7% H
50 -
: - I
0
Single Precision Double Precision

Note that in SP the GTX 280 is 10 x faster than a quad-core processor (at 2.33 GHz) and still 75 GFlop/s

€S6963

faster than an entire quad-socket quad-core Intel Xeon Tigerton system (cores running at 2.4 GHz)

Slide source: Stan Tomov, UTK (see www.cs.utk.edu/~dongarra)
13

THE
; UNIVERSITY
L10: Dense Linear Algebra UOF UTAH

Preview:
Dense Linear Algebra on GPUs

+ SGEMM result is not from algorithm of L5

+ Why? Significant reuse can be managed within
registers

+ Comparison:
[[GPURuleotThumb | This Lecture (sGEMM) ____|

Threading Generate lots of threads (up Only 64 threads/block provides 2
to 512/block) to hide warps, sufficient to hide latency plus
memory latency conserves registers
Shared memory Use to exploit reuse across ~ Use to communicate shared data
threads across threads
Registers Use for temporary per- Use to exploit significant reuse within
thread data athread
THE
56963 u UNIVERS
OF UTAH

€S6963

Volkov Slides 3-17, 24

15 THE
L10: Dense Linear Algebra UUNIVER TY

OF UTAH

My Research (with USC/L51 and Argonne):
What is CHILL?

High-level Ioop ; i++)7 mxm.c (also supports Fortran as input)
. 10; j++)1

transformation and T heior vy

code generation clil[jl+=alil (k1*blk] [31;

framework

— based on

polyhedral model
— script interface
for programmers

213-122.script

or compilers

— optimization
strate
9y for(3=0; 3<10; j++) mxm213.out
expressed as for (i=0; i<10; i+=2)
sequence of for (k=0; k<10; k+=2){
bl clil[3)+=ali) [k)*b[k] [31;
composable . clil[j1+=ali] [k+1]1*b[k+1][3]+
transformations cli+1][3]+=alivl] (k] *b (K] [3];
Cli+1][§1+=ali+1] [k+1]*b[k+1]1 (3]}
) 16
(56963 L10: Dense Linear Algebra UOF S

3/1/10

Latest Research: CUDA-CHILL

« Automatically
generate CUDA for .
NVIDIA GPU from
sequential code plus
script

* Abstraction
permits parallel
threads & staging
of data

* Heterogeneous
code generation:
Alternative scripts
generate CUDA,
OpenMP or
sequential code
tuned for memory
hierarchy

GFlops

€S6963

17
L10: Dense Linear Algebra

T et
+Vokov
9 AutoGen2(3248)
+ utoGen2 66)
> Ao Gen 2 (86418
@ AutoGen 1 (16416)

Input Size (Square Matrices)

Results provided by Malik Khan, Gabe Rudy, Chun Chen

THE
u UNIVERSITY
OF UTAH

CUDA-CHILL Automatically-Generated Code

for (i=0;i<n;i++)
for (j = 0;j <n; j++)
for (k = 0; k < n; k++)
c[illi] += alk][il*b{k];

original()

2 tile(0,1,T1,1,counted)
3 tile(0,3,TJ,2,counted)
4 tile(0,5,TK, 3, strided)
5 tile(0,4,TK,4,counted)
6 tile(0,5,1,5,counted)
7 tile(0,5,1,4,counted)
8 datacopy privatized(0,3,c,[4,5] false,-1,1,1)
9 datacopy(0,4,b,false,0,1,-16)

10 tile(3,4,(TJ*TK)/T1,4,counted)

11 tile(3,6,1,4,counted)

12 unroll(1,5,0)

13 unroll(2,5,0)

14 unroll(3,6,0)

15 unroli(0,8,0)

16 unrol(0,9,0)

17 cudaize(mm GPU,0,1,n/Tl,n/TJ,n,global)
18 cudathread([0,1],TJ, TI/TJ)

19 cudathread([1,1,0,1],TJ,TI/TJ,sync)
20 cudathread([1,1,1,1], TJ,TI/TJ,sync)
21 cudathread([2,1], TJ,TI/TJ)

CS6963

float P1[16];
__shared__ float P2[16][17];
bx = blockIdx.x, by = blockIdx.y;
tx = threadIdx.x, ty = threadIdx.y;
P1[0:15] = c[16*by:16*by+15][tx+64*bx+16*ty];
for (t6 = @; t10 <= 1008; t6+=16) {
P2[tx][4*ty:4*ty+3] = b[16*by+4*ty:16%*by+4*ty+3]
[tx+t6];
__syncthreads();
P1[0:15] += a[t6][64*bx+16*ty+tx]*P2[0][0:15]
P1[0:15] += a[t6+1][64*bx+16*ty+tx]*P2[1][0:15]

P1[0:15] += a[t6+15][64*bx+16*ty+tx]*P2[15][0:15]
__syncthreads();
c[16*by:16*by+15] [tx+64*bx+16*ty] = P1[0:15];

AAutomatically-generated CUDA code

Results provided by Malik Khan, Gabe Rudy, Chun Chen
€script
18

L10: Dense Linear Algebra

CUDA-CHILL: Higher-Level Interface (in progress)

init("mm.sp2", “"MarkedLoop")

tile_control({"i","j"}, {TI,T3},
{11_cont "

s

B 3"h
, {TK}, {11_control=
it g3t kK, M, U5,
tile_control({"i"}, {T3},
{11_control="ty",11_tile="tx"},

tile_control({" k"}

£417, "33, UKk, e, "ty", "0, k"))

--Assign loop levels to thread space and name the kernel

cudaize("mm_GPU",
{a=N*N, *N}, --arra;
{block: "}, thread={
--Copy the "c" array usage to registers
copy_to_registers("kk", "c", {"tx","ty"})
copy_to_shared("ty", "b")
--Unroll two innermost loop levels fully
unroll_to_depth(2)

*

19
CS6963 L10: Dense Linear Algebra

for (i=0;i<n;i++)
for (j=0;j < n; j++)
for (k = 0; k < n; k++)
cliJli] += alk]fil*blil(k];

12_control="jj"},

"k"}, strided)

for data copying
"I

Gabe Rudy Master’s thesis

THE
u UNIVERSITY
OF UTAH

Final Result: Copy C to registers, B to shared memory
and unroll

Steps 1 through 4 tile (for computation, data)
--Copy the "c" array usage to registers
5. copy_to_registers("kk", "c", {"tx","ty"})
6. copy_to_shared("ty", "b")
--Unroll two innermost loop levels fully
7. unroll_to_depth(2) float P1[16];
__shared__ float P2[16][17];
bx = blockIdx.x, by = blockIdx.y;
tx = threadIdx.x, ty = threadIdx.y;
P1[0:15] = c[16*by:16%by+15][tx+64*bx+16*ty];
for (t6 = 0; t10 <= 1008; t6+=16) {
P2[tx][4*ty:4*ty+3] = b[16*by+4*ty:16%by+4*ty+3]
[tx+t6];
__syncthreads();
P1[0:15] += a[t6][64*bx+16*ty+tx]*P2[0][0:15]
P1[0:15] += a[t6+1][64*bx+16*ty+tx]*P2[1][0:15]

for (i=0;i<n;i++)
for (j=0;j < n; j++)
for (k = 0; k < n; k++)
cli]li] += alk[il*blillk];

B goes into shared memory

C goes into registers and is
copied back at end

P1[0:15] += a[t6+15][64%bx+16*ty+tx]*P2[15][0:15]
__syncthreads();

}
c[16%by:16*by+15] [tx+64*bx+16*ty] = P1[@:15];

20

(56963 L10: Dense Linear Algebra

3/1/10

Next Class

+ See Khan/Rudy poster on Friday!
* More complex dense linear algebra

+ Some specific global synchronization
strategies to support these

