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1 Introduction

The Material Point Method (MPM) as described by Sulsky, et al. [1, 2] is a particle method
for structural mechanics simulations. Solid objects are represented by a collection of particles,
or “material points.” Each of these particles carries with it information for that part of the
solid object that it represents. This includes the mass, volume, position, velocity and stress
of that material. MPM differs from other so called “mesh-free” particle methods in that,
while each object is primarily represented by a collection of particles, a computational mesh
is also an important part of the calculation. Particles do not interact with each other directly,
rather the particle information is interpolated to the grid, where the equations of motion are
integrated forward in time. This time advanced solution is then used to update the particle
state. An example of two disks initially approaching each other represented by material
points on an overlying mesh is show in Figure 1.
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Figure 1: Initial particle representation of two colliding disks on an overlying mesh.

The method usually uses a regular structured grid as a computational mesh. While this
grid, in principle, deforms as the material that it is representing deforms, at the end of each
timestep, it is reset to it’s original undeformed position, in effect providing a new computa-
tional grid for each timestep. The use of a regular structured grid for each time step has a
number of computational advantages. Computation of spatial gradients is simplified. Mesh
entanglement, which can plague fully Lagrangian techniques, such as the Finite Element
Method (FEM), is avoided. MPM has also been successful in solving problems involving
contact between colliding objects, having an advantage over FEM in that the use of the
regular grid eliminates the need for doing costly searches for contact surfaces[3].



2 Algorithm

While a more detailed description of MPM can be found in [2], the algorithm is laid out
here. The equations of motion are cast in the form:

M,-a, = Fext, — Fint, (1)

where M, is the mass matrix, a, is the acceleration vector, Fext, is the external force vector
(sum of the body forces and tractions), and Fint,, is the internal force vector resulting from
the divergence of the material stresses. In general, M, is a large, sparse matrix. In practice,
and in what follows here, a “lumped” mass matrix is used, which only has entries on the
diagonal, and is thus represented as a column matrix.

The solution procedure begins by interpolating the particle state to the grid, to form M,
Fext,, and to get a velocity on the grid v,. These quantities are calculated at each grid
node by the following equations:

M; = > Sipm, (2)
p
%Sipmpvp
W= T ®
Fexti = ZSipFextp. (4)
p

my, is the particle mass, v, is the particle velocity, and Fext, is the external force on the
particle. The external force on the particle is generally an applied load of some type. In
Equation 3, the numerator is the nodal momentum, which is then divided by the nodal mass
to get a velocity. S;, is a “shape function” for the ith node evaluated at x,. Traditionally,
the shape functions are multiplicative combinations of one dimensional tent functions, as
shown in Figure 2. The shape functions serve to distance weight the contribution of each
particle to the grid nodes.

At this point, a velocity gradient, Vv, is computed at each particle using the grid veloc-
ities v :

VVp = Z GipVI (5)

where G, is the gradient of the i¢h node’s shape function, evaluated at x,. A one dimensional
example of Gy, is shown in Figure 3. Note that in going to multiple dimensions, the Gy,
are found by taking gradients of the multidimensional S;, NOT by forming multiplicative
combinations of the one-dimensional Gy,.

This velocity gradient is used as input to a constitutive model (stress-strain relationship)
which is evaluated at each particle. The specifics of this calculation are dependent on the



constitutive model. An example of a simple elastic material model is described in the ap-
pendix. The result of this calculation is the Cauchy stress at each particle, o,. With this,
the internal force due to the divergence of the stress is calculated:

Fint, = Y G0,v, (6)
3

where v, is the particle volume. The internal force can be thought of as the force that holds

a material together. For a given deformation, this force is larger for stiffer materials.
Everything is now available to solve Equation 1 for a,. With that, the backward Euler

method is used for all time integrations. A convective grid velocity Vg is computed:

L
v, = vgt+a,dl (7)

While the following calculation is never carried out, in principal, the nodes of the grid
also move with that convective velocity:

L L
X, = Xg+v,dt (8)
During this part of the computation, the particles move with the deforming grid. Their

position and velocity is explicitly updated by:

v(t+dt) = v,(t)+ Z Sipa;dt (9)

x,(t+dt) = x,(t)+ > Spvidt (10)

This completes one timestep. Note that not carrying out the calculation in 8 explicitly
has the effect of resetting the deformed grid to it’s undeformed position at the end of the
timestep cycle.

As with all explicit time integration methods, a timestep size limit must be enforced such
that dt < dz/(|v,|+ ¢) for all particles, where dz is the computational grid spacing and ¢ is
the speed at which stress waves propagate through the material. Failure to adhere to this
condition will cause the solution to become unstable and blow up. The material wavespeed
depends on the material model used, as well as on the particular parameters chosen for that
model. Specifics of calculating the wavespeed are given in the appendix.

3 Appendix: Material Modeling

The subject of modeling the response of materials to deformation is a subject that has
filled numerous textbooks. Therefore, rather than attempt to condense these volumes, here



the reader will be simply be given a simple material response model. Other more complex
material response models can be interchanged in the framework discussed above quite readily.
The author has come to prefer a class of models known as hyperelastic models. What
this means is that the stress response of these materials is derived from a strain energy
function. A strain energy function gives a relationship between the state of deformation that
a material is in, and the amount of stored strain energy that this material has. This is akin
to the familiar relationship for the stored energy in a spring, W = %kde where k is the
spring constant, and dx is the distance that the spring has been compressed or extended.
One such strain energy function is given by:

A A
W= J(° 1) = (5 +u)in + S(trace(FF - 3) (1)

from which the following relationship for the stress can be derived:

L %(J — %)I + w(FFT) — 1) (12)

where A and g are material constants, while J and F describe the state of deformation.
These will be defined shortly.

In the Algorithm section, the calculation of the velocity gradient, Vv, is given in Equation
5. Starting from there, we can then compute an increment in the deformation gradient, F(dt)
by:

F(dt) = Vv,dt+1L. (13)

This increment in the deformation gradient can then be used to compute a new total defor-
mation gradient using:

F(t+dt) = F(d)F(1). (14)

Note that the initial (t=0) deformation gradient is simply the identity, i.e. F(0) = I. Now
with the deformation gradient, one can compute .J by:

J = det(F(t+ dt)). (15)

Note that J represents the volumetric part of the deformation. Specifically, it is the ratio
of the current volume of an element of material to it’s original volume. Similarly, we can
define an increment in J as:

Tme = det(F(dt)) (16)

which is the ratio of the current volume of an element of material to it’s volume at the
previous timestep. Thus we can write:

vp(t+dt) = Jincvp(t). (17)



Elastic material properties are frequently given in terms of bulk and shear moduli, or s
and p. The shear is sometimes denoted by G. The shear modulus p appears in Equation 12
above. A can be computed from « and p by:

9
N = k- 18
K= gh (18)

Lastly, based on material properties A and p, a material wavespeed can be computed:

2 = (A+3p)2, (19)
Up

This wavespeed can be used in computing the timestep size as described above.
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Figure 2: One dimensional linear shape function, S(x).
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Figure 3: One dimensional linear shape function derivative, G(x).



