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The Generalized Interpolation 
Material Point Method 

Compaction of a foam 
microstructure 

Tungsten Particle Impacting sandstone 

2. Overlying mesh defined


1. Lagrangian material points carry all

    state data (position, velocity, stress, etc.)


5. Particle positions/velocities updated from 

    mesh solution.

6. Discard deformed mesh.

    Define new mesh and repeat
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The Material Point Method (MPM) 

3. Particle state projected to mesh, e.g.:


4. Conservation of momentum solved

    on mesh giving updated mesh velocity

    and (in principal) position.


   Stress at particles computed based

    on gradient of the mesh velocity.
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vg = Sgpmpvpp∑ Sgpmpp∑
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Interpolation function - MPM 
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Interpolation function - GIMP 
Cell width 

Particle width 

Interpolation function 
In 2D, shape functions are formed by the products of the x 
and y function: 

Gradients involve PARTIAL derivatives, so for instance: 

Sij (x, y) = Si (xp )Sj (yp )

∇Sip (x, y) =
dSi (xp )
dx

Si (yp )i + Si (xp )
dSi (yp )
dy

j

∇Sip (x, y) = Gxip (x, y)i +Gyip (x, y)j

Steps in an MPM code 
1.  Initialize particles and create (logically) a grid 
2.  Project (integrate) particle data to grid (mass, velocity, etc.) 
3.  Set boundary conditions on velocity 
4.  Compute internal force from divergence of stress 
5.  Compute acceleration on the grid (a=F/m) 
6.  Integrate velocity on the grid (v* = v + a*dt) 
7.  Set boundary conditions on v* and a. 
8.  Compute Stress, update volume, compute dt_new 
9.  Update particle position and velocity, t = t+ dt, dt = dt_new 
10. “Reset” grid and return to step 2 and repeat while t<t_final 
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There are two basic methods for determining particle locations 
1.  Acquire them from a file (e.g. image data) 

2.  Use geometric primitives to describe geometry, and inside/
outside tests to determine particle placement. 

Step 1:  Particle Initialization 

Day 8 

Step 1:  Particle Initialization 

At t=0, the particles need to be initialized with the following data 

1.  Position, xp 

2.  Volume, vp 

3.  Mass,  (mp=density*volume)  

4.  Velocity, Vp  

5.  Stress, σp = 0 

6.  Deformation Gradient (Fp =Identity) 

7.  Size Lxp, Lyp (dx/PPC) 

σ p =

σ xx σ xy 0
σ yx σ yy 0
0 0 σ zz
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Step 2:  Particle Data to Grid 

Compute mass and velocity on the grid, mi and vi  

A quick check on your work: 

mi = Sipmpp∑ +1.0x10−100

Vi =
SipmpVpp∑
mi

mii∑ = mpp∑ miVii∑ = mpp∑ Vp

Step 3:  Boundary Conditions 
For simplicity, assume that the computational domain 
is a rigid box.  If the velocity of the rigid walls is zero, 
then set the velocity on those computational nodes to 
be zero.  Also need to set the velocity on the “extra” 
nodes to be zero as well. 

Domain 
boundary 

Extra 
Nodes 

Note, for starters, you can 
skip this (and the other BC 
step) if you solve problems 
that stay away from the 
domain boundaries. 
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Step 4:  Compute Internal Force 
The internal force is the volume integral of the divergence 
of the stress (stress is a second order tensor).  The 
volume integral is approximated by summing the particle 
volumes.  The divergence operation uses the gradients of 
the shape functions to give: 

Or, a bit more explicitly: 

fi
int = − ∇Sip ⋅σ p( )vpp∑

fi
int( )x = − Gxip (x, y)σ xx +Gyip (x, y)σ yx( )vpp∑
fi
int( )x = − Gxip (x, y)σ xy +Gyip (x, y)σ yy( )vpp∑

Step 5:  Compute Acceleration 
This is basically just inverting Newton’s Second Law to get 
acceleration at each grid node: 

This is also a convenient place to include gravity: 

ai =
fi
ext + fi

int( )
mi

ai =
fi
ext + fi

int( )
mi

+ g

Step 6:  Integrate nodal Velocity 
Using basic forward Euler integration, advance the 
velocity at the grid nodes: 

V
i

* = Vi + ai • Δt

Step 7: Boundary Conditions 
As in Step 3, set all components of Vi* and ai to zero, on 
both the domain boundary nodes and the “extra” nodes. 
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Step 8: Compute Particle Stress 
The first part of this step is presented in a general 
manner.  Namely, computing the kinematic behavior at the 
particle level.  Then a specific “constitutive model” is given 
for getting an elastic stress from the deformation gradient, 
F. 

First, compute the velocity gradient at each particle, 
based on nodal velocities: 

Note that this is creating a second order tensor from two 
vectors (first order tensors) via a dyadic product. 

∇Vp = ∇SipVi
*

i∑

Step 8: Compute Particle Stress 
Next, we’ll use the velocity gradient tensor to update the 
deformation gradient F: 

With F in hand, one can use any number of constitutive 
models.  A simple one is given below: 

Where J=det(F) and µ and λ and material specific properties. 

Ft+Δt = (I +∇Vp ⋅ Δt)F
t

σ = λ
ln(J )
J
I + µ

J
FFT − I( )

Step 8: Compute Particle Stress 
Finally, update the particle volume according to: 

And compute a new timestep size that will satisfy the CFL 
stability condition: 

vp
t+Δt = det(I +∇Vp ⋅ Δt)vp

t

dtnew ≤ CFL
Vp + C( )
dx

,

where CFL  should be .5 or smaller,

C =
Evp
mp

,

and E =
µ 3λ + 2µ( )

λ + µ

Step 9: Update Particle State 
Update particle velocity according to: 

Lastly, update the time: 

Vp = Vp + Sipai ⋅ Δti∑
X p = X p + SipVi

* ⋅ Δt
i∑

time = time + Δt
Δt = Δtnew
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Step 10: Return to Step 2 
Repeat steps 2 through 9 until the time reaches the desired 
simulation time. 

A first Simulation 
Consider replicating the results from Section 7.3 of Sulsky, 
Chen and Schreyer, 1995.  There, two cylinder of diameter 
(approximately) 0.5 are given initial velocities towards each 
other, and they collide and bounce away. 

Properties given are: 
  Density = 1000 
  E    = 1000 
  Poisson’s ratio = 0.3 
  Velocity = ( 0.1,  0.1)  
           and (-0.1, -0.1) 

These values of E and Poisson’s  
ratio correspond to: 

 λ = 577 
 µ = 385 

V=(0.1, 0.1) 

V=(-0.1, -0.1) 

A first Simulation 
Energy plots such as that shown in Figure 5a can be 
obtained by summing up the kinetic energy of the particles: 

 KE  = 0.5 *mp*vp
2 

The strain energy is a little more complicated.  It is easiest to 
compute during the stress calculation, and is given by: 

 SE = 0.5*λ*(ln(J))-µ*ln(J)+0.5*µ*(trace(FTF-3)) 

Again, J in this equation is the determinant of F. 

A first Simulation 
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Parallelism - Domain Decomposition Parallelism - Domain Decomposition 


