
2/23/09

1

L9: Control Flow

CS6963 

Administrative

•  Project proposals
•  Due 5PM, Friday, March 13 (hard deadline)

•  MPM Sequential code and information
posted on website
– A brief discussion now

•  Class cancelled on Wednesday, Feb. 25

2

L9: Control Flow 

CS6963 

Outline
•  Recall SIMD Execution Model

– Impact of control flow
•  Improving Control Flow Performance

– Organize computation into warps with same
control flow path

– Avoid control flow by modifying
computation

– Tests for aggregate behavior (warp voting)
•  Read (a little) about this:
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=1

3

L9: Control Flow 

CS6963 

Recall SIMD Execution from L4

“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
Instruc6on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

4

L9: Control Flow 

CS6963 

2/23/09

2

threadIdx 

Recall SIMD Execution from L4

“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
Instruc6on 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

LDC 0, &(dout+ 
                 threadIdx) 

threadIdx threadIdx 

+  +  + 

&dout  &dout  &dout 

Each “core” 
ini6alizes data 
from addr 
based on its 

own threadIdx 

5

L9: Control Flow 

CS6963 

Recall SIMD Execution from L4

“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
Instruc6on 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

/* int i=0; */ 
LDC 0, R3 

Each “core” 
ini6alizes its 
own R3 

0  0  0 

6

L9: Control Flow 

CS6963 

Recall SIMD Execution from L4

“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
Instruc6on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO 

Each “core” 
performs  same 
opera6ons from 
its own registers 

Etc. 

7

L9: Control Flow 

CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc6on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  compare
threadIdx,2

8

L9: Control Flow 

CS6963 

2/23/09

3

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2) {
 out[threadIdx.x] += 100;
}
else {
 out[threadIdx.x] += 10;
}

P0 
Instruc6on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* possibly predicated
using CC */
(CC) LD R5,
 &(out+threadIdx.x)
(CC) ADD R5, R5, 100
(CC) ST R5,
 &(out+threadIdx.x)

X X ✔ ✔

9

L9: Control Flow 

CS6963 

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0 
Instruc6on 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* possibly predicated
using CC */
(not CC) LD R5,
 &(out+threadIdx)
(not CC) ADD R5, R5, 10
(not CC) ST R5,
 &(out+threadIdx)

✔ ✔ X X

10

L9: Control Flow 

CS6963 

A Very Simple Execution Model

•  No branch prediction
– Just evaluate branch targets and wait for

resolution
– But wait is only a small number of cycles

•  No speculation
– Only execute useful instructions

11

L9: Control Flow 

CS6963 

Terminology

•  Divergent paths
– Different threads within a warp take

different control flow paths within a kernel
function

– N divergent paths in a warp?
•  An N-way divergent warp is serially issued over

the N different paths using a hardware stack
and per-thread predication logic to only write
back results from the threads taking each
divergent path.

•  Performance decreases by about a factor of N
12

L9: Control Flow 
CS6963 

2/23/09

4

First Level of Defense:
Avoid Control Flow

•  Clever example from MPM

•  No need to test for divide by 0 error,
and slight delta does not impact results

mi = Sipmpp∑ +1.0x10−100

Vi =
SipmpVpp∑
mi

Add small constant 
to mass so that  

velocity calcula6on 
never divides by zero 

13

L9: Control Flow 

CS6963 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How thread blocks are partitioned

•  Thread blocks are partitioned into warps
–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from

generation to generation
–  (Covered next)

•  However, DO NOT rely on any ordering between
warps
–  If there are any dependences between threads, you must

__syncthreads() to get correct results
14

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Control Flow Instructions

•  A common case: avoid divergence when branch
condition is a function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a

block
•  Branch granularity < warp size; threads 0 and 1 follow

different path than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a

block
•  Branch granularity is a whole multiple of warp size; all threads

in any given warp follow the same path

15

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A Vector Parallel Reduction Example
(related to “count 6” assignment)

•  Assume an in-place reduction using
shared memory
– The original vector is in device global

memory
– The shared memory is used to hold a partial

sum vector
– Each iteration brings the partial sum vector

closer to the final sum
– The final solution will be in element 0

16

L9: Control Flow 

2/23/09

5

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A simple implementation

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 partialSum[t] += partialSum[t+stride];

}

17

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Vector Reduction with Branch
Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements
iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

18

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Some Observations
•  In each iterations, two control flow paths will be

sequentially traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition may cost extra cycles

depending on the implementation of divergence
•  No more than half of threads will be executing at any

time
–  All odd index threads are disabled right from the beginning!
–  On average, less than ¼ of the threads will be activated for

all warps over time.
–  After the 5th iteration, entire warps in each block will be

disabled, poor resource utilization but no divergence.
•  This can go on for a while, up to 4 more iterations (512/32=16=

24), where each iteration only has one thread activated until all
warps retire

19

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Can we do better?

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 partialSum[t] += partialSum[t+stride];

}

20

L9: Control Flow 

BAD: Divergence
due to interleaved
branch decisions

2/23/09

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A better implementation

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 partialSum[t] += partialSum[t+stride];

}

21

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Thread 0
No Divergence until < 16 sub-sums

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31 1

3

4

22

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Some Observations About the New
Implementation

•  Only the last 5 iterations will have
divergence

•  Entire warps will be shut down as
iterations progress
– For a 512-thread block, 4 iterations to shut

down all but one warp in each block
– Better resource utilization, will likely retire

warps and thus blocks faster
•  Recall, no bank conflicts either

23

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Predicated Execution Concept

<p1> LDR r1,r2,0

•  If p1 is TRUE, instruction executes normally

•  If p1 is FALSE, instruction treated as NOP

24

L9: Control Flow 

2/23/09

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Predication Example

:
:

if (x == 10)

 c = c + 1;

:

:

 :

 :

 LDR r5, X
 p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

 :
 :

25

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

B

A

C

D

A
B
C
D

Predication can be very helpful for
if-else

26

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

If-else example

 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p1> inst 2 from B

<p1> :

 :

<p2> inst 1 from C
<p2> inst 2 from C

 :

 :

 :

 :

 p1,p2 <- r5 eq 10
<p1> inst 1 from B

<p2> inst 1 from C

<p1> inst 2 from B

<p2> inst 2 from C

<p1> :

 :

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

27

L9: Control Flow 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Instruction Predication in G80

•  Comparison instructions set condition codes (CC)
•  Instructions can be predicated to write results only when CC

meets criterion (CC != 0, CC >= 0, etc.)

•  Compiler tries to predict if a branch condition is likely to
produce many divergent warps
–  If guaranteed not to diverge: only predicates if < 4 instructions
–  If not guaranteed: only predicates if < 7 instructions

•  May replace branches with instruction predication

•  ALL predicated instructions take execution cycles
–  Those with false conditions don’t write their output

•  Or invoke memory loads and stores
–  Saves branch instructions, so can be cheaper than serializing

divergent paths
28

L9: Control Flow 

2/23/09

8

Warp Vote Functions
(Compute Capability > 1.2)

•  Can test whether condition on all threads
in a warp evaluates to same value
int __all(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for all of them.
int __any(int predicate):
evaluates predicate for all threads of a warp
and returns non-zero iff predicate evaluates
to non-zero for any of them.

29

L9: Control Flow 

CS6963 

Using Warp Vote Functions

•  Can tailor code for when none/all take a
branch.

•  Eliminate overhead of branching and
predication.

•  Particularly useful for codes where
most threads will be the same
– Example 1: looking for something unusual in

image data
– Example 2: dealing with boundary conditions

30

L9: Control Flow 

CS6963 

Summary of Lecture

•  Impact of control flow on performance
– Due to SIMD execution model for threads

•  Strategies for avoiding control flow
– Eliminate divide by zero test (MPM)
– Warp vote function

•  Group together similar control flow
paths into warps
– Example: “tree” reduction

31

L9: Control Flow 

CS6963 

