2/23/09

L9: Control Flow

THE
CS6963 UUNIVERS[T‘{
OF UTAH

Administrative

* Project proposals
+ Due 5PM, Friday, March 13 (hard deadline)

* MPM Sequential code and information
posted on website
— A brief discussion now

* Class cancelled on Wednesday, Feb. 25

2 THE
CS6963 UNIVERSITY
L9: Control Flow u OF UTAH

Outline

* Recall SIMD Execution Model
— Impact of control flow
+ Improving Control Flow Performance
— Organize computation into warps with same
control flow path
— Avoid control flow by modifying
computation
— Tests for aggregate behavior (warp voting)

* Read (a little) about this:

http://www.realworldtech.com/page.cfm?ArticleID=RWT0908081952424p=1

THE
u UNIVERSITY
OF UTAH

€S6963 L9: Control Flow

Recall SIMD Execution from L4

"Count 6" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i«SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 6);
}

Instruction

Unit

4 THE
CS6963 UNIVERSITY
L9: Control Flow UOF UTAH

2/23/09

Recall SIMD Execution from L4

“Count 6" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i«SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 6):
}

threadidx MBI IS threadidx MY

Each “core”

inifﬁa"mzzata WESEEE DC O, &(dout+
rom addr g
based on its threadldx)

own threadld

5 THE
CS6963 . UNIVERSITY
L:contrl Fow O Govens

Recall SIMD Execution from L4

“Count 6" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i«SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 6);

}

Each “core”
initializes its
own R3

WBLERIEIE /% int i=0; */
Unit

LDCO, R3

6 THE
CS6963 UNIVERSITY
L9: Control Flow u OF UTAH

Recall SIMD Execution from L4

“Count 6" kernel function
d_out[threadIdx.x] = O;
for (int i=0; i«<SIZE/BLOCKSIZE; i++) {
int val = d_in[i*BLOCKSIZE + threadIdx.x];
d_out[threadIdx.x] += compare(val, 6):
}

/* i*BLOCKSIZE
Each “core” . + threadIdx */
performs same WS | DC BLOCKSIZE R2
operations from i MUL R1, R3,R2
ADD R4, R1,RO

its own registers

7 THE
56963) UNIVERSITY
L9: Control Flow u OF UTAH

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2){
out[threadIdx] += 100;

else {
out[threadIdx] += 10;

compare

Instruction threadIdx,2
Unit

8 THE
Cs6963 UNIVERSITY
L9: Control Flow UOF UTAH

2/23/09

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2) {
out[threadIdx.x] += 100;
}
else {
out[threadIdx.x] += 10;

/* possibly predicated
. using CC */
Instlrj:?ron @ C)gLD RS,
&(out+threadIdx.x)
(€C) ADD R5, R5, 100
(CC) STRS,
&(out+threadIdx.x)

9 THE
56963 UNIVERSITY
L9: Control Flow UOF UTAH

SIMD Execution of Control Flow

Control flow example
if (threadIdx >= 2){
out[threadIdx] += 100;

else {
out[threadIdx] += 10;

/* possibly predicated
: using CC */
L (ot co) LD RS,
&(out+threadIdx)
(not CC) ADD R5, R5, 10
(not CC) STR5,
&(out+threadIdx)

UNIVERSITY
10 v
€56963 9: Control Flow UO UTAH

A Very Simple Execution Model

* No branch prediction

— Just evaluate branch targets and wait for
resolution

— But wait is only a small number of cycles
* No speculation
— Only execute useful instructions

1 THE
56963 UNIVERSITY
L9: Control Flow u OF UTAH

Terminology

* Divergent paths
— Different threads within a warp take
different control flow paths within a kernel
function
— N divergent paths in a warp?

+ An N-way divergent warp is serially issued over
the N different paths using a hardware stack
and per-thread predication logic to only write
back results from the threads taking each
divergent path.

+ Performance decreases by about a factor of N
12

THE
CS6963 UNIVERSITY
L9: Control Flow u OF UTAH

2/23/09

First Level of Defense:
Avoid Control Flow

* Clevel" eXClmp|€ fl"Oh’\ MPM Add small constant

to mass so that

m = E S m +1.0x10™" velocity calculation
! P never divides by zero

ERTAL
[
ml

* No need to test for divide by O error,
and slight delta does not impact results

CS6963 8 U‘IEIIVE RSITY
- L9: Control Flow u OF UTAH

+ Thread blocks are partitioned into warps

+ Partitioning is always the same

+ However, DO NOT rely on any ordering between

How thread blocks are partitioned

— Thread IDs within a warp are consecutive and increasing
— Warp 0 starts with Thread ID O

— Thus you can use this knowledge in control flow

— However, the exact size of warps may change from
generation to generation

— (Covered next)

warps
— If there are any dependences between threads, you must
__syncthreads() to get correct results
14

THE
UNIVERSITY
L9: Control Flow u OF UTAH

Control Flow Instructions

* A common case: avoid divergence when branch
condition is a function of threa
— Example with divergence:
If (threadIdx.x > 2) {

}
g’lhiskcreafes two different control paths for threads in a
0C|

Branch granularity < warp size; threads 0 and 1 follow
different path than the rest of the threads in the first warp
— Example without divergence:
¢ If (threadIdx.x / WARP_SIZE > 2) { }
Qllsokcreafes two different control paths for threads ina
0C|
Branch granularity is a whole multiple of warp size; all threads
in any given warp follow the same pat!

15 UNIVERSITY
L9: Control Flow UQF UTAH

A Vector Parallel Reduction Example
(related to “count 6" assignment)

+ Assume an in-place reduction using
shared memory

— The original vector is in device global
memory

— The shared memory is used to hold a partial
sum vector

— Each iteration brings the partial sum vector
closer to the final sum

— The final solution will be in element O

16 THE
L9: Control Flow u lCJ)I;l [L}/TEAR}—S(ITY

2/23/09

Vector Reduction with Branch
A simple implementation Divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

+ Assume we have already loaded array into

__shared__ float partialSum[];

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)

__syncthreads () ;
if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

Array elements —

18 INIVERSITY
SITY
L9: Control Flow UO UTAH

7 UNIVERSITY
. S :
L9: Control Flow u OF UTAH

s, Urbana-Champaign

Some Observations Can we do better?
 Ineach iterations, two control flow paths will be .
sequentially traversed for each warp + Assume we have already loaded array into

— Threads that perform addition and threads that do not
— Threads that do not perform addition may cost extra cycles
depending on the implementation of divergence

__shared__ float partialSum[];

BAD: Divergence

+ No more than half of threads will be executing at any unstgned dnt b= threadids.x; due to interleaved
time for (unsigned int stride = 1; branch decisions
— All odd index threads are disabled right from the beginning! stride < blockDim.x; stride *=
— On average, less than of the threads will be activated for {
all warps over time. __syncthreads () ;
— After the 5™ iteration, entire warps in each block will be if (t % (2*stride) ==

disabled, poor resource utilization but no divergence.
« This can go on for a while, up to 4 more iterations (512/32=16=
2%), where each iteration only has one thread activated until all }
warps retire

partialSum[t] += partialSum[t+stride];

1 UNIVERSITY 20 UNIVERSITY
) STING SITY
L9: Control Flow u OF UTAH L9: Control Flow U OF UTAH

2/23/09

A betfter implementation

No Divergence until < 16 sub-sums

Thread 0

*+ Assume we have already loaded array into

__shared__ float partialSum[];

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x >> 1;
stride >= 1; stride >> 1)
{

syncthreads () ;

if (t < stride)

partialSum[t] += partialSum[t+stride];

David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 21 THE avid Kirk/NVIDIA and Wen-mei wu, 2007-200" 22 THE - "
ECE 498AL, University oflinos, Urbana-Char L9: Control Flow Ugrglll}/ﬂvﬁlw CE 498AL, University of linois, Urbana-Champaign 19: Control Flow ULCJ)I:[L}/TE'&’)(IT\

Some Observations About the New

. Predicated Execution Concept
Implementation
* Only the last 5 iterations will have <pl> IDR r1,72,0
dlvergence - If plis TRUE, instruction executes normally
* Entire warps will be shut down as

iterations progress
— For a 512-thread block, 4 iterations to shut
down all but one warp in each block
— Betfter resource utilization, will likely retire
warps and thus blocks faster
* Recall, no bank conflicts either

© David K IDIA and Wen-mei W. Hwu, 2007-20
E 498AL, University of Illinois, Urbana-Champaigr

- If plis FALSE, instruction treated as NOP

23 U‘IZIVER(ITY david Kirk/NVIDIA and Wen-mei wu, 2007-200¢ 24 H’IEI[VER‘IT\
8 S CE 498AL, University of llinois, Urbana-Champaign SITY
L9: Control Flow u OF UTAH fi L9: Control Flow u OF UTAH

2/23/09

Predication Example Predication can be very helpful for

if-else
A
if (x == 10) LDR r5, X A
c=c+ 1; pl <- r5 eq 10 B c g
<pl> LDR rl <- C D
<pl> ADD rl, rl, 1 \ /
<pl> STR rl -> C
D
L9: Cor\z\fo\ﬂow L9: COVVZ(?O\ Flow
If-else example Instruction Predication in G80

+ Comparison instructions set condition codes (CC)
+ Instructions can be Fr‘edica'rzd to write results only when CC

: meets criterion (CC = 0, CC>= 0, etc.

pl,p2 <- r5 eq 10 pl,p2 <- r5 eq 10 ¢)

<pl> inst 1 from B . . P [
P <pl> inst 1 from B + Compiler tries to predict if a branch condition is likely to
<pl> inst 2 from B <p2> inst 1 from C produce many divergent warps
<pl> — If guaranteed not to diverge: only predicates if < 4 instructions
: cchodue! <P1> inst 2 from B - If not guaranteed: onI}l prtedlca’rzsAnf <7 msTrucfnons

<p2> inst 1 from C <p2> inst 2 from C * May replace branches with instruction predication

@]

<p2> inst 2 from
® + ALL predicated instructions take execution cycles
— Those with false conditions don't write their output
: : + Orinvoke memory loads and stores
The cost is extra instructions will be issued each time the code is — Saves branch instructions, so can be cheaper than serializing
executed. However, there is no branch divergence. divergent paths

27 ite 28
L9: Control Flow u SR L9: Control Flow

<pl>

2/23/09

Warp Vote Functions
(Compute Capability > 1.2)
* Can test whether condition on all threads
in a warp evaluates to same value
int __all(int predicate):
evaluates predicate for all threads of a warp

and returns non-zero iff predicate evaluates
to non-zero for all of them.

int __any(int predicate):
evaluates predicate for all threads of a warp

and returns non-zero iff predicate evaluates
to non-zero for any of them.

CS6963 29 {)H[EJIVERSIT‘(
L9: Control Flow u OF UTAH

Summary of Lecture

+ Impact of control flow on performance
— Due to SIMD execution model for threads
+ Strategies for avoiding control flow
— Eliminate divide by zero test (MPM)
— Warp vote function
+ Group together similar control flow
paths into warps
— Example: “tree" reduction

CS6963 s {)H[EJIVERSIT‘(
L9: Control Flow u OF UTAH

Using Warp Vote Functions

* Can tailor code for when none/all take a
branch.

* Eliminate overhead of branching and
predication.

* Particularly useful for codes where
most threads will be the same

— Example 1: looking for something unusual in
image data

— Example 2: dealing with boundary conditions

30 UNIVERSITY
L9: Control Flow UOF UTAH

€56963

