
2/23/09

1

L8: Memory Hierarchy Optimization,
Bandwidth

CS6963 

Administrative

•  Homework #2
– Due 5PM, TODAY
– Use handin program to submit

•  Project proposals
•  Due 5PM, Friday, March 13 (hard deadline)

•  MPM Sequential code and information
posted on website

•  Class cancelled on Wednesday, Feb. 25
•  Questions?

2

L8: Memory Hierarchy III 

CS6963 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
3

L8: Memory Hierarchy III 

Optimizing the Memory Hierarchy on
GPUs

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Align data structures to address boundaries
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism

CS6963 
4

L8: Memory Hierarchy III 

2/23/09

2

Outline

•  Bandwidth Optimizations
– Parallel memory accesses in shared memory
– Maximize utility of every memory operation

•  Load/store USEFUL data

•  Architecture Issues
– Shared memory bank conflicts
– Global memory coalescing
– Alignment

CS6963 
5

L8: Memory Hierarchy III 

Global Memory Accesses

•  Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

•  Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

•  Maximizing bandwidth:
– Operate on an entire 128 byte segment for

each memory transfer
6

L8: Memory Hierarchy III 
CS6963 

Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

•  Find other active threads requesting addresses
within that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
7

L8: Memory Hierarchy III 
CS6963 

Protocol for most systems (including lab
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word

8

L8: Memory Hierarchy III 

CS6963 

2/23/09

3

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

9

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

10

L8: Memory Hierarchy III 

Impact of Global Memory Coalescing
(Compute capability 1.1 and below example)

Consider the following CUDA kernel that reverses the
elements of an array*

__global__ void reverseArrayBlock(int *d_out, int *d_in) {
 int inOffset = blockDim.x * blockIdx.x;
 int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);
 int in = inOffset + threadIdx.x;
 int out = outOffset + (blockDim.x - 1 - threadIdx.x);
 d_out[out] = d_in[in];
}

From Dr. Dobb’s Journal,
 http://www.ddj.com/hpc-high-performance-computing/207603131

11

L8: Memory Hierarchy III 

CS6963 

Shared Memory Version of Reverse Array
__global__ void reverseArrayBlock(int *d_out, int *d_in) {
 extern __shared__ int s_data[];
 int inOffset = blockDim.x * blockIdx.x;
 int in = inOffset + threadIdx.x;

 // Load one element per thread from device memory and store it
 // *in reversed order* into temporary shared memory
 s_data[blockDim.x - 1 - threadIdx.x] = d_in[in];

 // Block until all threads in the block have written their data to shared mem
 __syncthreads();

 // write the data from shared memory in forward order,
 // but to the reversed block offset as before
 int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);
 int out = outOffset + threadIdx.x; d_out[out] = s_data[threadIdx.x];
}
From Dr. Dobb’s Journal,

 http://www.ddj.com/hpc-high-performance-computing/208801731
12

L8: Memory Hierarchy III 
CS6963 

2/23/09

4

What Happened?

•  The first version is about 50% slower!
•  On examination, the same amount of

data is transferred to/from global
memory

•  Let’s look at the access patterns
– More examples in CUDA programming guide

13

L8: Memory Hierarchy III 

CS6963 

Alignment

•  Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
– An aligned memory address is a multiple of

the memory segment size
– In compute 1.0 and 1.1 devices, address

accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

– In future systems, sometimes alignment
can reduce number of accesses

14

L8: Memory Hierarchy III 

CS6963 

More on Alignment

•  Objects allocated statically or by
cudaMalloc begin at aligned addresses
– But still need to think about index

expressions
•  May want to align structures

struct __align__(8) { struct __align__(16) {
 float a; float a;
 float b; float b;
}; float c;
 };

15

L8: Memory Hierarchy III 

CS6963 

What Can You Do to Improve Bandwidth
to Global Memory?

•  Think about spatial reuse and access
patterns across threads
– May need a different computation & data

partitioning
– May want to rearrange data in shared

memory, even if no temporal reuse
– Similar issues, but much better in future

hardware generations

16

L8: Memory Hierarchy III 

CS6963 

2/23/09

5

Bandwidth to Shared Memory:
Parallel Memory Accesses

•  Consider each thread accessing a
different location in shared memory

•  Bandwidth maximized if each one is able
to proceed in parallel

•  Hardware to support this
– Banked memory: each bank can support an

access on every memory cycle

17

L8: Memory Hierarchy III 

CS6963 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Bank Addressing Examples

•  No Bank Conflicts
–  Linear addressing

stride == 1

•  No Bank Conflicts
–  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

18

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign  19 

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits
per clock cycle

•  Successive 32-bit words are assigned to
successive banks

•  G80 has 16 banks
–  So bank = address % 16
–  Same as the size of a half-warp

•  No bank conflicts between different half-
warps, only within a single half-warp

20

L8: Memory Hierarchy III 

2/23/09

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
–  If all threads of a half-warp access different banks, there

is no bank conflict
–  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)
•  The slow case:

–  Bank Conflict: multiple threads in the same half-warp
access the same bank

–  Must serialize the accesses
–  Cost = max # of simultaneous accesses to a single bank

21

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Linear Addressing
•  Given:
__shared__ float shared[256];
float foo =

 shared[baseIndex + s *
threadIdx.x];

•  This is only bank-conflict-
free if s shares no common
factors with the number of
banks
–  16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

22

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Data types and bank conflicts
•  This has no conflicts if type of shared is 32-

bits:
foo = shared[baseIndex + threadIdx.x]

•  But not if the data type is smaller
–  4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

–  2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

23

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Structs and Bank Conflicts
•  Struct assignments compile into as many memory accesses as

there are struct members:

struct vector { float x, y, z; };
struct myType {
 float f;
 int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

•  This has no bank conflicts for vector; struct size is 3 words
–  3 accesses per thread, contiguous banks (no common factor with

16)

struct vector v = vectors[baseIndex + threadIdx.x];

•  This has 2-way bank conflicts for my Type; (2 accesses per
thread)

struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

24

L8: Memory Hierarchy III 

2/23/09

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Common Bank Conflict Patterns, 1D Array

•  Each thread loads 2 elements into
shared mem:
–  2-way-interleaved loads result in

2-way bank conflicts:
int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];
•  This makes sense for traditional

CPU threads, exploits spatial
locality in cache line and reduces
sharing traffic
–  Not in shared memory usage where

there is no cache line effects but
banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

25

L8: Memory Hierarchy III 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

A Better Array Access Pattern
•  Each thread loads one

element in every
consecutive group of
blockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] =
global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

26

L8: Memory Hierarchy III 

What Can You Do to Improve Bandwidth
to Shared Memory?

•  Think about memory access patterns
across threads
– May need a different computation & data

partitioning
– Sometimes “padding” can be used on a

dimension to align accesses

27

L8: Memory Hierarchy III 

CS6963 

Summary of Lecture

•  Maximize Memory Bandwidth!
– Make each memory access count

•  Exploit spatial locality in global memory
accesses

•  The opposite goal in shared memory
– Each thread accesses independent memory

banks

28

L8: Memory Hierarchy III 

CS6963 

