2/23/09

L8: Memory Hierarchy Optimization,
Bandwidth

THE
CS6963 UUNIVERSIT‘{
OF UTAH

Administrative

Homework #2
— Due 5PM, TODAY
— Use handin program to submit

Project proposals
+ Due 5PM, Friday, March 13 (hard deadline)

MPM Sequential code and information
posted on website

Class cancelled on Wednesday, Feb. 25
Questions?

3 2 THE
56963 L8: Memory Hierarchy Iil u R

Targets of Memory Hierarchy
Optimizations

*+ Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

* Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should b% less ‘rhag aﬁficipa‘red gain9 PYing

B 3 THE
csse3 15: emary Hirarchy I W sy

Optimizing the Memory Hierarchy on
GPUs

+ Device memory access times non-uniform so
data placement significantly affects
performance.

+ But controlling data placement may require
additional copying, so consider overhead.

+ Optimizations to increase memory bandwidth.
Idea: maximize utility of each memory access.
+ Align data structures to address boundaries
+ Coalesce global memory accesses

* Avoid memory bank conflicts to increase memory
access parallelism

3 4 "THE
56963 L8: Memory Hierarchy Iil u R

2/23/09

Outline

* Bandwidth Optimizations
— Parallel memory accesses in shared memory
— Maximize utility of every memory operation
* Load/store USEFUL data
* Architecture Issues
— Shared memory bank conflicts
— Global memory coalescing
— Alignment

€56963

THE
u UNIVERSITY
OF UTAH

5
L8: Memory Hierarchy Il

Global Memory Accesses

Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

Given an address to load or store, memory
returns/updates “"segments” of either 32
bytes, 64 bytes or 128 bytes

Maximizing bandwidth:

— Operate on an entire 128 byte segment for
each memory transfer

6 THE
2 5 Memory ierarch 1 U Sroversiry

Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

+ Start with memory request by smallest humbered
thread. Find the memory segment that contains the

address (32, 64 or 128 byte segment, depending on
data type)

+ Find other active threads requesting addresses
within that segment and coalesce

+ Reduce transaction size if possible
+ Access memory and mark threads as “inactive”

+ Repeat until all threads in half-warp are serviced
*Includes Tesla and GTX platforms

9 7 THE
652 L5 Memory ierarchy 1 U Snoversimy

Protocol for most systems (including lab
machines) even more restrictive

* For compute capability 1.0 and 1.1

— Threads must access the words in a
segment in sequence

— The kth thread must access the kth word

8 THE
2 5 Memory ierarchy U Sroversir

2/23/09

Memory Layout of a Matrix in C
Access n!m

direction in My M,y My Mgy
Kernel
code M2 My, My, M3,
M).’! M1.3 MZ‘S M’i‘i
Time Period 1 Time Period 2

T, T, Ty T (T, T, T3 Ty

iRRARARA
[

X 9
niversity of llinois, Ur mpaiEn L8 Memory Hierarchy Il

£

o4 Mig Mgy Mgy Moz Mz My, My, Mog Mys Mag Ms

THE
u UNIVERSITY
OF UTAH

Memory Layout of a Matrix in C

Access
direction in Moy My My My,
Kernel
code Moz Mi2 Mz M;,

M(\.S MLS MZ‘S MSL‘»
Time Period 2
T, T, T. T,

Tifne Period 1
T, T, Ty T,

AR

Mg M4 Mg g Mo, My, M,

Mog Mz Mz M35

’ : mei W, Hwu, 2007-200 10
498AL, U llinois, Urbana-Champaign 8: Memory Hierarchy Iil

Impact of Global Memory Coalescing
(Compute capability 1.1 and below example)

Consider the following CUDA kernel that reverses the
elements of an array*

__global__ void reverseArrayBlock(int *d_out, int *d_in) {
int inOffset = blockDim.x * blockIdx.x;
int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);
int in = inOffset + threadIdx.x;
int out = outOffset + (blockDim.x - 1 - threadIdx.x);
d_out[out] = d_in[in];

From Dr. Dobb's Journal,
http://www.ddj.com/hpc-high-performance-computing/207603131

1
CS6963
5696 L8: Memory Hierarchy Il

THE
u UNIVERSITY
OF UTAH

Shared Memory Version of Reverse Array

__global__ void reverseArrayBlock(int *d_out, int *d_in) {
extern __shared__ int s_data[]
int inOffset = blockDim.x * blockIdx.x;
int in = inOffset + threadIdx.x;

// Load one element per thread from device memory and store it
// *in reversed order* into temporary shared memory
s_data[blockDim.x - 1 - threadIdx.x] = d_in[in];

// Block until all threads in the block have written their data to shared mem
__syncthreads();

// write the data from shared memory in forward order,

// but to the reversed block offset as before

int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

int out = outOffset + threadIdx.x; d_out[out] = s_data[threadIdx.x];

?:rom Dr. Dobb’s Journal,
http://www.ddj.com/hpc-high-performance-computing/208801731
12

(56963 18: Memory Hierarchy Iil

2/23/09

What Happened?

» The first version is about 50% slower!

+ On examination, the same amount of
data is transferred to/from global
memory

* Let's look at the access patterns
— More examples in CUDA programming guide

13
€56963
L8: Memory Hierarchy Il

THE
u UNIVERSITY
OF UTAH

Alignment

* Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
— An aligned memory address is a multiple of

the memory segment size

—In compute 1.0 and 1.1 devices, address
accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

—In future systems, sometimes alignment

€56963 4

can reduce nhumber of accesses
U{JHIEIIVERSITY
OF UTAH

L8: Memory Hierarchy Il

More on Alignment

+ Objects allocated statically or by
cudaMalloc begin at aligned addresses
— But still need to think about index

expressions

* May want to align structures
struct __align__(8) { struct __align__(16) {

float a; float a;
float b; float b;

3 float c;
Y

€56963

THE
u UNIVERSITY
OF UTAH

15
L8: Memory Hierarchy Il

What Can You Do to Improve Bandwidth
to Global Memory?

* Think about spatial reuse and access
patterns across threads
— May need a different computation & data
partitioning
— May want to rearrange data in shared
memory, even if no temporal reuse

— Similar issues, but much better in future
hardware generations

16
(56963 L8: Memory Hierarchy Il

THE
u UNIVERSITY
OF UTAH

2/23/09

Bandwidth to Shared Memory:

Parallel Memory Accesses Bank Addressing Examples

» No Bank Conflicts

— Linear addressing
stride ==

» No Bank Conflicts

* Consider each thread accessing a .
— Random 1:1 Permutation

different location in shared memory

+ Bandwidth maximized if each one is able
to proceed in parallel

* Hardware to support this

— Banked memory: each bank can support an
access on every memory cycle

Thread 0
Thread 1
Thread 2

4
> ‘ Bank 2
Thread 3 “ Bank 3
Thread 4 "« Bank 4
Thread 5 Bank 5
Thread 6 I ~“‘ Bank 6
Thread 7 '

Thread 15

18

o e ey T e

Bank Addressing Examples How addresses map to banks on G80
+ 2-way Bank Conflicts *+ 8-way Bank Conflicts * Each bank has a bandwidth of 32 bits
- Linear addressing - Linear addressing per clock CYCIG
stride == stride ==

+ Successive 32-bit words are assigned to
successive banks

* 680 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

* No bank conflicts between different half-
warps, only within a single half-warp

20 —
L8: Memory Hierarchy Il uglgi IL}’TE‘\R:(IT\

Thread 0
Thread 1

Thread 2 “ Bank 2
Thread 3 ‘,‘ Bank 3
Thread 4 "— Bank 4

‘ Bank 5

Thread 8
Thread 9
Thread 10
Thread 11

Bank 15
en-mei W. Hwu, 2007-2009 THE
bana-Champaigr ! UUNIVERSITY
OF UTAH

2/23/09

Shared memory bank conflicts

Shared memory is as fast as registers if there are no
bank conflicts

+ The fast case:

— If all threads of a half-warp access different banks, there
is no bank conflict

— If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)

» The slow case:

— Bank Conflict: multiple threads in the same half-warp
access the same bank

- Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank

009 21
18: Memory Hierarchy 11l

THE
u UNIVERSITY
OF UTAH

Linear Addressing
+ Given:

~_shared float shared[256];
float foo =

shared[baseIndex + s *
threadIdx.x];

Thread 15 Bank 15

s=3

+ This is only bank-conflict-
free if s shares no common
factors with the number of
banks

— 16 0n 680, so s must be odd g~

09 22 THE —
L8: Memory Hierarchy Il glgl IL}’TEARﬁIT\

Data types and bank conflicts

+ This has no conflicts if type of shared is 32-
bits:

foo = shared[ba

ndex + threadIdx.x]

+ But not if the data type is smaller
— 4-way bank conflicts:

_ shared__ char shared[];
foo = shared[b

Index + threadIdx.x];

— 2-way bank conflicts:
__shared__ short shared[];

foo = shared[baselIndex + threadIdx.x]

: A

23
18: Memory Hierarchy 11l

THE
u UNIVERSITY
OF UTAH

Structs and Bank Conflicts

Struct assignments compile into as many memory accesses as
there are struct members:

struct vector { float x, y, z; };
struct myType {
float f;
int c¢;
_ shared_ struct vector vectors[64]; 4’@

_ shared struct myType myTypes([64];

This has no bank conflicts for vector; struct size is 3 words
— 3 accesses per thread, contiguous banks (no common factor with
16)

struct vector v = vectors|

ndex + threadIdx.x];

This has 2-way bank conflicts for my Type: (2 accesses per
thread)

eIndex + threadIdx.x];

THE
u UNIVERSITY
OF UTAH

2/23/09

Common Bank Conflict Patterns, 1D Array

» Each thread loads 2 elements into

shared mem:
— 2-way-interleaved loads result in
2-way bank conflicts: :::::f

int tid = threadIdx.x; Thread 2
shared[2*tid] = global[2*tid]; wem
shared[2*tid+1] = global[2*tid+1]; S
+ This makes sense for traditional

CPU threads, exploits spatial Theads

locality in cache line and reduces =

Thread 10

sharing traffic

— Not in shared memory usage where
there is no cache line effects but

Thread 11

banking effects

25
18: Memory Hierarchy I1l

THE
u UNIVERSITY
OF UTAH

A Better Array Access Pattern

» Each thread loads one
element in every

consecutive group of —
blockDim elements.
shared[tid] = global[tid]; T::::.
shared[tid + blockDim.x] = [REE

global[tid + blockDim.x]; [HiEH

rk/NVIDIA and Wen-mei W. Hwu, 200 2
: s, Urbana-C L8: Memory Hierarchy Iil

THE
u UNIVERSITY
OF UTAH

What Can You Do to Improve Bandwidth
to Shared Memory?

+ Think about memory access patterns
across threads
— May need a different computation & data
partitioning
— Sometimes “padding” can be used on a
dimension to align accesses

2

7
56963 18: Memory Hierarchy 11l

THE
u UNIVERSITY
OF UTAH

Summary of Lecture

+ Maximize Memory Bandwidth!
— Make each memory access count

+ Exploit spatial locality in global memory
accesses

* The opposite goal in shared memory

— Each thread accesses independent memory
banks

56963 28 THE —
L8: Memory Hierarchy Il uglgl IL}’TE'{%IT\

