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L6: Memory Hierarchy Optimization I, 
Data Placement 

CS6963 

Administrative 

•  Projects mostly graded  
– Grades by Wednesday, possibly sooner 

•  Homework coming out this afternoon 
– Due Wednesday, Feb. 18 
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Overview 

•  Where data can be stored 
•  And how to get it there 

•  Some guidelines for where to store data 
•  High level description of how to write 

code to optimize for memory hierarchy 
– Fill in details Wednesday 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 
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Optimizing the Memory Hierarchy on 
GPUs 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Align data structures to address boundaries 
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 

CS6963 
5


L6: Memory Hierarchy I 

Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Programmer’s View: Memory Spaces 

•  Each thread can: 
–  Read/write per-thread registers 
–  Read/write per-thread local memory 
–  Read/write per-block shared memory 
–  Read/write per-grid global memory 
–  Read only per-grid constant memory 
–  Read only per-grid texture memory 
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•  The host can read/write 
global, constant, and 
texture memory 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Hardware Implementation: Memory 
Architecture 

•  The local, global, constant, and 
texture spaces are regions of 
device memory 

•  Each multiprocessor has: 
–  A set of 32-bit registers per 

processor 
–  On-chip shared memory 

•  Where the shared memory 
space resides 

–  A read-only constant cache 
•  To speed up access to the 

constant memory space 
–  A read-only texture cache 

•  To speed up access to the 
texture memory space 
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Terminology Review 

•  device = GPU = set of multiprocessors  
•  Multiprocessor = set of processors & shared memory 
•  Kernel = GPU program 
•  Grid = array of thread blocks that execute a kernel 
•  Thread block = group of SIMD threads that execute 

a kernel and can communicate via shared memory 

Memory Location Cached Access Who 
Local Off-chip No Read/write One thread 
Shared On-chip N/A - resident Read/write All threads in a block 
Global Off-chip No Read/write All threads + host 
Constant Off-chip Yes Read All threads + host 
Texture Off-chip Yes Read All threads + host 
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Access Times (REWRITE?) 

•  Register – dedicated HW - single cycle 
•  Constant and Texture caches – possibly single 

cycle, proportional to addresses accessed by warp 
•  Shared Memory – dedicated HW - single cycle 
•  Local Memory – DRAM, no cache - *slow* 
•  Global Memory – DRAM, no cache - *slow* 
•  Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
•  Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality 
•  Instruction Memory (invisible) – DRAM, cached 

Data Placement: Conceptual 

•  Copies from host to device go to some part of 
global memory (possibly, constant or texture 
memory) 

•  How to use SP shared memory 
•  Must construct or be copied from global memory 

by kernel program  
•  How to use constant or texture cache 

–  Read-only “reused” data can be placed in constant 
& texture memory by host 

•  Local memory  
–  Deals with capacity limitations of registers and 

shared memory 
–  Eliminates worries about race conditions 
–  … but SLOW 
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Data Placement: Syntax 

•  Through type qualifiers  
–  __constant__, __shared__, __local__, 

__device__ 
•  Through cudaMemcpy calls 

–  Flavor of call and symbolic constant designate 
where to copy 

•  Implicit default behavior 
–  Device memory without qualifier is global memory 
–  Host by default copies to global memory 
–  Thread variables go into registers unless capacity 

exceeded, then local memory 
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Language Extensions: Variable Type Qualifiers 

•  __device__ is optional when used with 
__local__,  __shared__, or  
__constant__ 

•  Automatic variables without any qualifier 
reside in a register 
–  Except arrays that reside in local memory 

Memory Scope Lifetime 
__device__ __local__    int LocalVar; local thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 
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Variable Type Restrictions 

•  Pointers can only point to memory 
allocated or declared in global memory: 
– Allocated in the host and passed to the 

kernel:  
 __global__ void KernelFunc(float* 
ptr) 

– Obtained as the address of a global 
variable: float* ptr = &GlobalVar; 

Rest of Today’s Lecture 

•  Mechanics of how to place data in 
shared memory and constant memory 

•  Tiling transformation to reuse data 
within 
– Shared memory 
– Constant cache 
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Constant Memory Example 

•  Signal recognition:  
– Apply input signal (a vector) to a set of 

precomputed transform matrices 
– Compute M1V, M2V, …, MnV 

__constant__ float d_signalVector[M]; 
__device__ float R[N][M]; 

__host__ void outerApplySignal () { 
    float *h_inputSignal; 
    dim3 dimGrid(N); 
    dim3 dimBlock(M); 
    cudaMemcpyToSymbol (d_signalVector, 
          h_inputSignal, M*sizeof(float)); 
   ApplySignal<<<dimGrid,dimBlock>>>(M); 
} 

__global__ void ApplySignal (int M) { 
    float result = 0.0; /* register */ 

    for (j=0; j<M; j++) 
        result += d_M[blockIdx.x][threadIdx.x][j] * 
               d_signalVector[j]; 
    R[blockIdx.x][threadIdx.x] = result; 
} 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More on Constant Cache 
•  Example from previous slide 

– All threads in a block accessing same 
element of signal vector 

– Brought into cache for first access, then 
latency equivalent to a register access  

P0 
Instrucmon 

Unit P!  PM‐1 

Reg 

... 
Reg  Reg 

Constant Cache 

LD signalVector[j] 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Additional Detail 

•  Suppose each thread accesses different 
data from constant memory on same 
instruction 
– Reuse across threads? 

•  Consider capacity of constant cache and locality 
•  Code transformation needed?  (later in lecture) 
•  Cache latency proportional to number of 

accesses in a warp 
– No reuse?   

•  Should not be in constant memory. 
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Now Let’s Look at Shared Memory 

•  Common Programming Pattern (5.1.2 
of CUDA manual) 
–  Load data into shared memory 
–  Synchronize (if necessary) 
–  Operate on data in shared memory 
–  Synchronize (if necessary) 
–  Write intermediate results to global 

memory 
–  Repeat until done 

Shared 
memory 

Global memory 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Mechanics of Using Shared Memory 

•  __shared__ type qualifier required 
•  Must be allocated from global/device 

function, or as “extern” 
•  Examples: 

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocamon */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs,MEMSIZE>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   /* create or copy from global memory */ 
   d_s_array[j] = …; 

  /* write result back to global memory */ 
   d_g_array[j] =  d_s_array[j]; 
} 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Matrix Transpose (from SDK) 
_global__ void transpose(float *odata, float *idata, int width, int height) 
{ 
        __shared__ float block[BLOCK_DIM][BLOCK_DIM+1]; 

        // read the matrix tile into shared memory 
        unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 
        unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 
        unsigned int index_in = yIndex * width + xIndex; 
        block[threadIdx.y][threadIdx.x] = idata[index_in]; 

        __syncthreads(); 

        // write the transposed matrix tile to global memory 
        xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
        yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
        unsigned int index_out = yIndex * height + xIndex; 
        odata[index_out] = block[threadIdx.x][threadIdx.y]; 
} 

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory 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Recall Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 
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Temporal Reuse in Sequential Code 

•  Same data used in distinct iterations I and 
I’  

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1] 

• A[j] has self-temporal reuse in loop i 
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Spatial Reuse (Ignore for now) 

•  Same data transfer (usually cache line) used in 
distinct iterations  I and I’  

·  A[j] has self-spatial reuse in loop j 
•  Multi-dimensional array note: C arrays are 

stored in row-major order 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 
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Group Reuse 

•  Same data used by distinct references 

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in 
loop j 

for (i=1; i<N; i++) 
for (j=1; j<N; j++) 
  A[j]= A[j]+A[j+1]+A[j-1]; 
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Can Use Reordering Transformations! 

•  Analyze reuse in computation 
•  Apply loop reordering transformations 

to improve locality based on reuse 
•  With any loop reordering 

transformation, always ask 
– Safety? (doesn’t reverse dependences) 
– Profitablity? (improves locality) 
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Loop Permutation: 
A Reordering Transformation 

for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

Which one is better for row-major storage? 

CS6963 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Safety of Permutation 
•  Intuition: Cannot permute two loops i and j in a loop 

nest if doing so reverses the direction of any 
dependence. 

•  Loops i through j of an n-deep loop nest are fully 
permutable if for all dependences D, 

    either 
      (d1, … di-1) > 0 
 or  

             forall k, i ≤ k ≤ j, dk ≥ 0 
•  Stated without proof: Within the affine domain, n-1 

inner loops of n-deep loop nest can be transformed to 
be fully permutable. 

CS6963 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Simple Examples: 2-d Loop Nests 

•  Distance vectors 

•  Ok to permute? 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=0; j<6; j++) 
    A[i+1][j-1]=A[i][j] 

      +B[j]; 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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Blocking reorders loop iterations to 

bring iterations that reuse data closer 
in time 

J 

I 

J 

I 

CS6963 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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii, i<min(ii+s-1,N), i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii, i<min(ii+s-1,N),i++) 
   D[i] = D[i] +B[j][i]; 

Permute 
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Legality of Tiling 

•  Tiling = strip-mine and permutation 
– Strip-mine does not reorder iterations 
– Permutation must be legal 
OR 
–  strip size less than dependence 

distance 
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32


L6: Memory Hierarchy I 



2/10/09 

9 

A Few Words On Tiling 

•  Tiling can be used hierarchically to compute 
partial results on a block of data wherever 
there are capacity limitations 
–  Between grids if data exceeds global memory 

capacity 
–  Across thread blocks if shared data exceeds 

shared memory capacity  
–  Within threads if data in constant cache exceeds 

cache capacity   
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Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix mulmplicamon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 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Tiled Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 

M 

N 

P 

Psub 

BLOCK_SIZE 

WIDTH WIDTH 

BLOCK_SIZE BLOCK_SIZE 

bx 

tx 
01 bsize-1 2

0 1 2

by 
ty 
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O
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K
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IZ
E

 
B

L
O

C
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_S
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B
L

O
C

K
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T
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W
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T
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Shared Memory Usage 

•  Assume each SMP has 16KB shared memory 
–  Each Thread Block uses 2*256*4B = 2KB of shared 

memory.  
–  Can potentially have up to 8 Thread Blocks actively 

executing 
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096 

pending loads 
•  In practice, there will probably be up to half of this due to 

scheduling to make use of SPs. 
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB 

shared memory usage per Thread Block, allowing only up to 
two Thread Blocks active at the same time 
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First-order Size Considerations 

•  Each Thread Block should have a minimal of 
192 threads 
– BLOCK_SIZE of 16 gives 16*16 = 256 threads 

•  A minimal of 32 Thread Blocks 
– A 1024*1024 P Matrix gives 64*64 = 4096 

Thread Blocks 

•  Each thread block performs 2*256 = 512 
float loads from global memory for 256 * 
(2*16) = 8,192 mul/add operations.  
– Memory bandwidth no longer a limiting factor 
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CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
dim3 dimGrid(N.width  / dimBlock.x,  
      M.height / dimBlock.y); 

For very large N and M dimensions, one 
will need to add another level of blocking 

and execute the second-level blocks 
sequentially. 
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CUDA Code – Kernel Overview 
// Block index 
int bx = blockIdx.x; 
int by = blockIdx.y; 
// Thread index 
int tx = threadIdx.x; 
int ty = threadIdx.y; 

// Pvalue stores the element of the block sub-matrix 
// that is computed by the thread 
float Pvalue = 0; 

// Loop over all the sub-matrices of M and N 
// required to compute the block sub-matrix 
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) { 

 code from the next few slides }; 
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CUDA Code - Load Data to Shared 
Memory 

// Get a pointer to the current sub-matrix Msub of M 

Matrix Msub = GetSubMatrix(M, m, by); 

// Get a pointer to the current sub-matrix Nsub of N 

Matrix Nsub = GetSubMatrix(N, bx, m); 

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; 
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; 

// each thread loads one element of the sub-matrix 

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); 

// each thread loads one element of the sub-matrix 

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty); 
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CUDA Code - Compute Result 

// Synchronize to make sure the sub-matrices are loaded 
// before starting the computation 

__syncthreads(); 

// each thread computes one element of the block sub-matrix 

for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

// Synchronize to make sure that the preceding 
// computation is done before loading two new 
// sub-matrices of M and N in the next iteration 

__syncthreads(); 
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CUDA Code - Save Result 

// Get a pointer to the block sub-matrix of P 

Matrix Psub = GetSubMatrix(P, bx, by); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 

SetMatrixElement(Psub, tx, ty, Pvalue); 

This code should run at about 45 GFLOPS 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Matrix Multiply in CUDA 

•  Imagine you want to compute extremely 
large matrices. 
– That don’t fit in global memory 

•  This is where an additional level of tiling 
could be used, between grids  

CS6963 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Summary of Lecture 

•  How to place data in constant memory 
and shared memory 

•  Reordering transformations to improve 
locality 

•  Tiling transformation 
•  Matrix multiply example 

CS6963 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Next Time 

•  Complete this example 
•  Reasoning about reuse and locality 
•  Talk about projects and assign proposal 
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