
2/10/09 

1 

L6: Memory Hierarchy Optimization I,
Data Placement

CS6963 

Administrative

•  Projects mostly graded
– Grades by Wednesday, possibly sooner

•  Homework coming out this afternoon
– Due Wednesday, Feb. 18

CS6963 
2

L6: Memory Hierarchy I 

Overview

•  Where data can be stored
•  And how to get it there

•  Some guidelines for where to store data
•  High level description of how to write

code to optimize for memory hierarchy
– Fill in details Wednesday

CS6963 
3

L6: Memory Hierarchy I 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
4

L6: Memory Hierarchy I 

2/10/09 

2 

Optimizing the Memory Hierarchy on
GPUs

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Align data structures to address boundaries
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism

CS6963 
5

L6: Memory Hierarchy I 

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963 
6

L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

7
L6: Memory Hierarchy 

Programmer’s View: Memory Spaces

•  Each thread can:
–  Read/write per-thread registers
–  Read/write per-thread local memory
–  Read/write per-block shared memory
–  Read/write per-grid global memory
–  Read only per-grid constant memory
–  Read only per-grid texture memory

Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host 

•  The host can read/write 
global, constant, and 
texture memory 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

8
L6: Memory Hierarchy I 

Hardware Implementation: Memory
Architecture

•  The local, global, constant, and
texture spaces are regions of
device memory

•  Each multiprocessor has:
–  A set of 32-bit registers per

processor
–  On-chip shared memory

•  Where the shared memory
space resides

–  A read-only constant cache
•  To speed up access to the

constant memory space
–  A read-only texture cache

•  To speed up access to the
texture memory space

Device 

MulEprocessor N 

MulEprocessor 2 
MulEprocessor 1 

Device memory 

Shared Memory 

InstrucEon 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Global, constant, texture memories 

2/10/09 

3 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

9
L6: Memory Hierarchy I

Terminology Review

•  device = GPU = set of multiprocessors
•  Multiprocessor = set of processors & shared memory
•  Kernel = GPU program
•  Grid = array of thread blocks that execute a kernel
•  Thread block = group of SIMD threads that execute

a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

10
L5: Memory Hierarchy 

Access Times (REWRITE?)

•  Register – dedicated HW - single cycle
•  Constant and Texture caches – possibly single

cycle, proportional to addresses accessed by warp
•  Shared Memory – dedicated HW - single cycle
•  Local Memory – DRAM, no cache - *slow*
•  Global Memory – DRAM, no cache - *slow*
•  Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
•  Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
•  Instruction Memory (invisible) – DRAM, cached

Data Placement: Conceptual

•  Copies from host to device go to some part of
global memory (possibly, constant or texture
memory)

•  How to use SP shared memory
•  Must construct or be copied from global memory

by kernel program
•  How to use constant or texture cache

–  Read-only “reused” data can be placed in constant
& texture memory by host

•  Local memory
–  Deals with capacity limitations of registers and

shared memory
–  Eliminates worries about race conditions
–  … but SLOW

CS6963 
11

L6: Memory Hierarchy I 

Data Placement: Syntax

•  Through type qualifiers
–  __constant__, __shared__, __local__,

__device__
•  Through cudaMemcpy calls

–  Flavor of call and symbolic constant designate
where to copy

•  Implicit default behavior
–  Device memory without qualifier is global memory
–  Host by default copies to global memory
–  Thread variables go into registers unless capacity

exceeded, then local memory

CS6963 
12

L6: Memory Hierarchy I 

2/10/09 

4 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

13
L6: Memory Hierarchy 

Language Extensions: Variable Type Qualifiers

•  __device__ is optional when used with
__local__, __shared__, or
__constant__

•  Automatic variables without any qualifier
reside in a register
–  Except arrays that reside in local memory

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

14
L6: Memory Hierarchy I

Variable Type Restrictions

•  Pointers can only point to memory
allocated or declared in global memory:
– Allocated in the host and passed to the

kernel:
 __global__ void KernelFunc(float*
ptr)

– Obtained as the address of a global
variable: float* ptr = &GlobalVar;

Rest of Today’s Lecture

•  Mechanics of how to place data in
shared memory and constant memory

•  Tiling transformation to reuse data
within
– Shared memory
– Constant cache

15
L6: Memory Hierarchy I 

Constant Memory Example

•  Signal recognition:
– Apply input signal (a vector) to a set of

precomputed transform matrices
– Compute M1V, M2V, …, MnV

__constant__ float d_signalVector[M]; 
__device__ float R[N][M]; 

__host__ void outerApplySignal () { 
    float *h_inputSignal; 
    dim3 dimGrid(N); 
    dim3 dimBlock(M); 
    cudaMemcpyToSymbol (d_signalVector, 
          h_inputSignal, M*sizeof(float)); 
   ApplySignal<<<dimGrid,dimBlock>>>(M); 
} 

__global__ void ApplySignal (int M) { 
    float result = 0.0; /* register */ 

    for (j=0; j<M; j++) 
        result += d_M[blockIdx.x][threadIdx.x][j] * 
               d_signalVector[j]; 
    R[blockIdx.x][threadIdx.x] = result; 
} 

CS6963 
16

L6: Memory Hierarchy I 

2/10/09 

5 

More on Constant Cache
•  Example from previous slide

– All threads in a block accessing same
element of signal vector

– Brought into cache for first access, then
latency equivalent to a register access

P0 
Instrucmon 

Unit P!  PM‐1 

Reg 

... 
Reg  Reg 

Constant Cache 

LD signalVector[j] 

CS6963 
17

L6: Memory Hierarchy I 

Additional Detail

•  Suppose each thread accesses different
data from constant memory on same
instruction
– Reuse across threads?

•  Consider capacity of constant cache and locality
•  Code transformation needed? (later in lecture)
•  Cache latency proportional to number of

accesses in a warp
– No reuse?

•  Should not be in constant memory.

CS6963 
18

L6: Memory Hierarchy I 

Now Let’s Look at Shared Memory

•  Common Programming Pattern (5.1.2
of CUDA manual)
–  Load data into shared memory
–  Synchronize (if necessary)
–  Operate on data in shared memory
–  Synchronize (if necessary)
–  Write intermediate results to global

memory
–  Repeat until done

Shared 
memory 

Global memory 

CS6963 
19

L6: Memory Hierarchy I 

Mechanics of Using Shared Memory

•  __shared__ type qualifier required
•  Must be allocated from global/device

function, or as “extern”
•  Examples:

extern __shared__ float  d_s_array[]; 

/* a form of dynamic allocamon */ 
/* MEMSIZE is size of per‐block  */ 
/* shared memory*/  
__host__ void outerCompute() { 
   compute<<<gs,bs,MEMSIZE>>>(); 
}  
__global__ void compute() { 
     d_s_array[i] = …; 
} 

__global__ void compute2() { 
   __shared__ float d_s_array[M]; 

   /* create or copy from global memory */ 
   d_s_array[j] = …; 

  /* write result back to global memory */ 
   d_g_array[j] =  d_s_array[j]; 
}  

CS6963 
20

L6: Memory Hierarchy I 

2/10/09 

6 

Matrix Transpose (from SDK)
_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

 // read the matrix tile into shared memory
 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
 unsigned int index_in = yIndex * width + xIndex;
 block[threadIdx.y][threadIdx.x] = idata[index_in];

 __syncthreads();

 // write the transposed matrix tile to global memory
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
 unsigned int index_out = yIndex * height + xIndex;
 odata[index_out] = block[threadIdx.x][threadIdx.y];
}

odata and idata in 
global memory 

Rearrange in 
shared memory 
and write back 
efficiently to 

global memory  

CS6963 
21

L6: Memory Hierarchy I 

Recall Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963 
22

L6: Memory Hierarchy I 

Temporal Reuse in Sequential Code

•  Same data used in distinct iterations I and
I’

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1]

• A[j] has self-temporal reuse in loop i

CS6963 
23

L6: Memory Hierarchy I 

Spatial Reuse (Ignore for now)

•  Same data transfer (usually cache line) used in
distinct iterations I and I’

·  A[j] has self-spatial reuse in loop j
•  Multi-dimensional array note: C arrays are

stored in row-major order

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963 
24

L6: Memory Hierarchy I 

2/10/09 

7 

Group Reuse

•  Same data used by distinct references

•  A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in
loop j 

for (i=1; i<N; i++)
for (j=1; j<N; j++)
 A[j]= A[j]+A[j+1]+A[j-1];

CS6963 
25

L6: Memory Hierarchy I 
26 

Can Use Reordering Transformations!

•  Analyze reuse in computation
•  Apply loop reordering transformations

to improve locality based on reuse
•  With any loop reordering

transformation, always ask
– Safety? (doesn’t reverse dependences)
– Profitablity? (improves locality)

CS6963 
26

L6: Memory Hierarchy I 

Loop Permutation:
A Reordering Transformation

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 
27

L6: Memory Hierarchy I 

Safety of Permutation
•  Intuition: Cannot permute two loops i and j in a loop

nest if doing so reverses the direction of any
dependence.

•  Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,

 either
 (d1, … di-1) > 0
 or

 forall k, i ≤ k ≤ j, dk ≥ 0
•  Stated without proof: Within the affine domain, n-1

inner loops of n-deep loop nest can be transformed to
be fully permutable.

CS6963 
28

L6: Memory Hierarchy I 

2/10/09 

8 

Simple Examples: 2-d Loop Nests

•  Distance vectors

•  Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)
 A[i+1][j-1]=A[i][j]

 +B[j]; 

CS6963 
29

L6: Memory Hierarchy I 

Tiling (Blocking):
Another Loop Reordering Transformation
•  Blocking reorders loop iterations to

bring iterations that reuse data closer
in time

J 

I 

J 

I 

CS6963 
30

L6: Memory Hierarchy I 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii, i<min(ii+s-1,N), i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii, i<min(ii+s-1,N),i++)
 D[i] = D[i] +B[j][i];

Permute

CS6963 
31

L6: Memory Hierarchy I 

Legality of Tiling

•  Tiling = strip-mine and permutation
– Strip-mine does not reorder iterations
– Permutation must be legal
OR
–  strip size less than dependence

distance

CS6963 
32

L6: Memory Hierarchy I 

2/10/09 

9 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever
there are capacity limitations
–  Between grids if data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds

shared memory capacity
–  Within threads if data in constant cache exceeds

cache capacity

CS6963 
33

L6: Memory Hierarchy I 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix mulmplicamon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

34
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Tiled Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

35
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared Memory Usage

•  Assume each SMP has 16KB shared memory
–  Each Thread Block uses 2*256*4B = 2KB of shared

memory.
–  Can potentially have up to 8 Thread Blocks actively

executing
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads
•  In practice, there will probably be up to half of this due to

scheduling to make use of SPs.
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB

shared memory usage per Thread Block, allowing only up to
two Thread Blocks active at the same time

36
L6: Memory Hierarchy I 

2/10/09 

10 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

First-order Size Considerations

•  Each Thread Block should have a minimal of
192 threads
– BLOCK_SIZE of 16 gives 16*16 = 256 threads

•  A minimal of 32 Thread Blocks
– A 1024*1024 P Matrix gives 64*64 = 4096

Thread Blocks

•  Each thread block performs 2*256 = 512
float loads from global memory for 256 *
(2*16) = 8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

37
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
 M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

38
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Overview
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

 code from the next few slides };

39
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

40
L6: Memory Hierarchy I 

2/10/09 

11 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

41
L6: Memory Hierarchy I 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 45 GFLOPS 

42
L6: Memory Hierarchy I 

Matrix Multiply in CUDA

•  Imagine you want to compute extremely
large matrices.
– That don’t fit in global memory

•  This is where an additional level of tiling
could be used, between grids

CS6963 
43

L6: Memory Hierarchy I 

Summary of Lecture

•  How to place data in constant memory
and shared memory

•  Reordering transformations to improve
locality

•  Tiling transformation
•  Matrix multiply example

CS6963 
44

L6: Memory Hierarchy I 

2/10/09 

12 

Next Time

•  Complete this example
•  Reasoning about reuse and locality
•  Talk about projects and assign proposal

CS6963 
45

L6: Memory Hierarchy I 

