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Administrative

* Projects mostly graded
— 6rades by Wednesday, possibly sooner
» Homework coming out this afternoon
— Due Wednesday, Feb. 18
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Overview

* Where data can be stored
* And how to get it there

+ Some guidelines for where to store data

+ High level description of how to write
code fo optimize for memory hierarchy
—Fill in details Wednesday
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Targets of Memory Hierarchy
Optimizations

Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should bpe less ‘rha?\ arﬁ‘ricipa’red gaing pYing
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Optimizing the I\ggmgry Hierarchy on Reuse and Locality

+ Device memory access times non-uniform so
data placement significantly affects
performance.

+ But controlling data placement may require
additional copying, so consider overhead.

+ Optimizations to increase memory bandwidth.
Idea: maximize utility of each memory access.
+ Align data structures to address boundaries
* Coalesce global memory accesses

* Avoid memory bank conflicts to increase memory
access parallelism

+ Consider how data is accessed
— Data reuse:
+ Same data used multiple times
* Intrinsic in computation
— Data locality:
+ Data is reused and is present in “fast memory"
+ Same data or same data transfer
+ If a computation has reuse, what can we do to get
locality?
» Appropriate data placement and layout
+ Code reordering transformations
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Programmer's View: Memory Spaces Hardware Implemen‘ra‘rnon- Memory
Architecture
+ Each thread can: o The local. alobal. constant. and I8
. . . e local, global, constant, an Multprocessor N
= Read/write per-thread registers Block (0,0) Block (1,0) texture spaces are regions of ’ :
— Read/write per-thread local memory device memory | Multprocessor
— Read/write per-block shared memory +  Each multiprocessor has: Multiprocessor 1
— Read/write per-grid global memory —  Aset of 32-bit registers per
— Read only per-grid constant memory ’ ! processor

- Read only per-grid texture memory ~  On-chip shared memory

*  Where the shared memory
space resides
— Aread-only constant cache
To speed up access to the
constant memory space
— Aread-only texture cache
+  To speed up access fo the
texture memory space

‘Thread (0, 0)

‘Thread (1,0)

‘ Thread (0,0) | Thread (1,0)

Instruction
unit

1

e The host can read/write
global, constant, and
texture memory

Global, constant, texture

7
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Terminology Review

device = GPU = set of multiprocessors
Multiprocessor = set of processors & shared memory
Kernel = GPU program

6rid = array of thread blocks that execute a kernel

Thread block = group of SIMD threads that execute
a kernel and can communicate via shared memory

Memory Location Cached Access Who

Local Off-chip No Read/write One thread

Shared On-chip N/A - resident | Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host
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Access Times (REWRITE?)

Register - dedicated HW - single cycle

Constant and Texture caches - possibly single
cycle, proportional to addresses accessed by warp
Shared Memory - dedicated HW - single cycle
Local Memory - DRAM, no cache - *slow*

Global Memory - DRAM, no cache - *slow*

Constant Memory - DRAM, cached, 1..10s...100s of
cycles, depending on cache locality

Texture Memory - DRAM, cached, 1..10s...100s of
cycles, depending on cache locality

Instruction Memory (invisible) - DRAM, cached
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Data Placement: Conceptual

Copies from host to device go to some part of

global memory (possibly, constant or texture

memory)

How to use SP shared memory

* Must construct or be copied from global memory
by kernel program

How to use constant or texture cache

— Read-only “reused” data can be placed in constant
& texture memory by host

Local memory

— Deals with capacity limitations of registers and
shared memory

— Eliminates worries about race conditions
— .. but SLOW

€56963

Data Placement: Syntax

Through type qualifiers

— __constant__, __shared__, _ local___,
__device___

Through cudaMemcpy calls

— Flavor of call and symbolic constant designate
where to copy

Implicit default behavior

— Device memory without qualifier is global memory

— Host by default copies to global memory

— Thread variables go into registers unless capacity
exceeded, then local memory
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Language Extensions: Variable Type Qualifiers

Memory | Scope Lifetime

int Localvar; local thread thread
int Sharedvar; shared | block block
evice int GlobalvVar; global grid | application

int ConstantVar; | constant | grid | application

+ _ device__is optional when used with
__local_ , shared_ ,or
__constant

*+ Automatic variables without any qualifier
reside in a register
— Except arrays that reside in local memory
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Variable Type Restrictions

* Pointers can only point fo memory
allocated or declared in global memory:
— Allocated in the host and passed to the
kernel:
__global  void KernelFunc (float*
ptr)

— Obtained as the address of a global
variable: float* ptr = &GlobalVar;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
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Rest of Today's Lecture

* Mechanics of how to place data in
shared memory and constant memory
« Tiling transformation to reuse data
within
— Shared memory
— Constant cache

THE
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Constant Memory Example

+ Signal recognition:
— Apply input signal (a vector) to a set of
precomputed transform matrices

— Compute M;V, M,V, .., M,V

__constant__ float d_signalVector[M];

—device__float RIN][M]; __global__ void ApplySignal (int M) {

~0.0: /* register *
__host__ void outerApplySignal () { float result = 0.0; /* register */

float *h_inputSignal;

dim3 dimGrid(N);

dim3 dimBlock(M);

cudaMemcpyToSymbol (d_signalVector,
h_inputSignal, M*sizeof(float));

ApplySignal<<<dimGrid,dimBlock>>>(M);

e UNIVERSITY
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for (j=0; j<M; j++)
result += d_M[blockldx.x][threadldx.x][j]
d_signalVector([jl;
R[blockldx.x][threadldx.x] = result;

}

€S6963
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More on Constant Cache

+ Example from previous slide
— All threads in a block accessing same
element of signal vector
— Brought into cache for first access, then
latency equivalent to a register access

Instruction

Unit LD signalVector(j]

Constant Cache

€S6963
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Additional Detail

+ Suppose each thread accesses different
data from constant memory on same
instruction
— Reuse across threads?

« Consider capacity of constant cache and locality
* Code transformation needed? (later in lecture)

* Cache latency proportional to number of
accesses in a warp

—No reuse?
+ Should not be in constant memory.
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Now Let's Look at Shared Memory

+ Common Programming Pattern (5.1.2
of CUDA manual)
— Load data into shared memory
— Synchronize (if necessary)
— Operate on data in shared memory
— Synchronize (if necessary)

— Write intermediate results to global
memory

— Repeat until done

Shared
memory

€S6963
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Mechanics of Using Shared Memory

+ __shared__ type qualifier required

+ Must be allocated from global/device
function, or as “extern”

+ Examples:

extern __shared__ float d_s_array[]; __global__ void compute2() {

__shared__ float d_s_array[M];
/* a form of dynamic allocation */
/* MEMSIZE is size of per-block */
/* shared memory*/
__host__ void outerCompute() {
compute<<<gs,bs,MEMSIZE>>>();

/* create or copy from global memory */
d_s_array[jl = ...;

/* write result back to global memory */
d_g_array[j] = d_s_array[j];
__global__ void compute() {

d_s_array[i] = ...;
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Matrix Transpose (from SDK)

_global__ void transpose(float *odata, float *idata, int width, int height)
i 1.

__shared___ float block[BLOCK_DIM][P

global memory
// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads(): —

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
unsigned int index_out = yIndex * height + xIndex;
odatafindex_out] = block[threadIdx.x][threadIdx.y];

global memory
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Recall Reuse and Locality

+ Consider how data is accessed
— Data reuse:
+ Same data used multiple times
* Intrinsic in computation
— Data locality:
+ Data is reused and is present in “fast memory”
+ Same data or same data transfer
+ If a computation has reuse, what can we do to get
locality?
» Appropriate data placement and layout
+ Code reordering transformations
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Temporal Reuse in Sequential Code

+ Same data used in distinct iterations I and
T

for (i=1; i<N; i++)
for (j=1; jJ<N; j++)

A[jl= A[JI+A[j+1]+A[j-1]

* A[j] has self-temporal reuse in loop i
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Spatial Reuse (Ignore for now)

+ Same data transfer (usually cache line) used in
distinct iterations I and T'
for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[jl= A[JI+A[j+1]+A[j-1];

- A[J] has self-spatial reuse in loop j

* Multi-dimensional array note: C arrays are
stored in row-major order
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Group Reuse

+ Same data used by distinct references

for (i=1; i<N; i++)
for (j=1; jJ<N; j++)

A[jl= A[JI+A[j+1]+A[j-1];

* A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in
loop 3
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Can Use Reordering Transformations!

+ Analyze reuse in computation

+ Apply loop reordering tfransformations
to improve locality based on reuse

+ With any loop reordering
transformation, always ask
— Safety? (doesn't reverse dependences)
— Profitablity? (improves locality)
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Loop Permutation:
A Reordering Transformation

Permute the order of the loops to modify the traversal order

for (i= 0; i<3; i++)
for (3=0; j<6; j++)

for (j=0; j<6; j++)
for (i= 0; i<3; i++)

A[i] [J+1]=A[i] [J]1+B[]]; A[i] [J+1]1=A[i] [J]1+B[]];

new traversal order!

INAVAVAVAY

i i
Which one is better for row-major storage?
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Safety of Permutation

+ Intuition: Cannot permute two loops i and jin a loop
nest if doing so reverses the direction of any
dependence.

+ Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,
either

(dy, ...diy)>0
or
forallk,i<sk<j d,20

« Stated without proof: Within the affine domain, n-1
inner loops of n-deep loop nest can be transformed to
be fully permutable.
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Simple Examples: 2-d Loop Nests

for (i= 0; i<3; i++)
for (3=0; j<6; j++)

for (i= 0; i<3; i++)
for (j=0; j<6; j++)
A[i+1][j-11=A[i][]]
+B[j]/

A[i] [J+1]=A[i] [J]1+B[]];

« Distance vectors

+ Ok to permute?
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Tiling (Blocking):
Another Loop Reordering Transformation

* Blocking reorders loop iterations to
bring iterations that reuse data closer

in fime
! |
I -
. e
F-——— > x-—»_‘
B S\E’X

J J
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Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)

D[i] = D[i] + B[j]1[i];

Strip for (j3=1; j<M; j++)
mine for (ii=1; ii<N; ii+=s)
for (i=ii, i<min(ii+s-1,N), i++)
D[i] = D[i] +B[j][il];

for (ii=1; ii<N; ii+=s)
Permute for (j=1; j<M; j++)
for (i=ii, i<min(ii+s-1,N), i++)
D[i] = D[i] +B[3j]l[i];

31
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Legality of Tiling

« Tiling = strip-mine and permutation
— Strip-mine does not reorder iterations
—Permutation must be legal
OR

— strip size less than dependence
distance
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A Few Words On Tiling

« Tiling can be used hierarchically to compute
partial results on a block of data wherever
there are capacity limitations
— Between grids if data exceeds global memory

capacity
— Across thread blocks if shared data exceeds
shared memory capacity

— Within threads if data in constant cache exceeds
cache capacity

. 33
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Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) k

for (inti = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + j];
sum+=a*b;

}
P[i * Width + j] = sum;
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Tiled Multiply Using Thread Blocks

* One computes one square sub-
matrix Py, of size BLOCK_SIZE o
+ One thread computes one element —

of P ‘
* Assume that the dimensions of M

and N are multiples of
BLOCK_SIZE and square shape

[l
%
2

y
bsize-1
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Shared Memory Usage

+ Assume each SMP has 16KB shared memory
— Each Thread Block uses 2*256*4B = 2KB of shared

memory.

— Can potentially have up to 8 Thread Blocks actively
executing

— For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096
pending loads

« Inpractice, there will probably be up to half of this due to
scheduling to make use of SPs.
— The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB
shared memory usage per Thread Block, allowing only up to
two Thread Blocks active at the same time
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First-order Size Considerations

» Each Thread Block should have a minimal of
threads

— BLOCK_SIZE of 16 gives 16*16 = 256 threads

* A minimal of 32 Thread Blocks

— A 1024*1024 P Matrix gives 64*64 = 4096
Thread Blocks

 Each hread block per' orms 2*256 = 512
Ioa‘r oads r'omglo al memory for 256 *
(2*16) = 8,192 mdl/add operations.

— Memory bandwidth no Ionger a limiting factor
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CUDA Code - Kernel Execution
Configuration
// Setup the execution configuration
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid (N.width / dimBlock.x,
M.height / dimBlock.y):

For very large N and M dimensions, one

will need to add another level of blocking
and execute the second-level blocks
sequentially.
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CUDA Code - Kernel Overview

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N

// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {
code from the next few slides };
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CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix (M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix (N, bx, m);

__shared
_ shared

float Ms[BLOCK SIZE] [BLOCK SIZE];
float Ns[BLOCK SIZE] [BLOCK SIZE];

// each thread loads one element of the sub-matrix

Ms[ty] [tx] = GetMatrixElement (Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty] [tx] = GetMatrixElement (Nsub, tx, ty);
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CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads () ;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();
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CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P
Matrix Psub = GetSubMatrix (P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement (Psub, tx, ty, Pvalue);

This code should run at about 45 GFLOPS

L6: Memory Hierarchy |

THE
u UNIVERSITY
OF UTAH

Matrix Multiply in CUDA

* Imagine you want to compute extremely
large matrices.
— That don't fit in global memory

* This is where an additional level of tiling
could be used, between grids
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Summary of Lecture

* How to place data in constant memory
and shared memory

* Reordering transformations to improve
locality

« Tiling tfransformation
* Matrix multiply example
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Next Time

+ Complete this example
* Reasoning about reuse and locality
* Talk about projects and assign proposal
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