
2/11/09 

1 

L5: Writing Correct
Programs, cont.

CS6963
 1 
L5: Wri-ng Correct Programs 

Outline
•  How to tell if your parallelization is

correct?
•  Race conditions and data dependences
•  Tools that detect race conditions
•  Abstractions for writing correct parallel

code
– Mapping these abstractions to CUDA

•  Reading (if you can find it):
–  “Optimizing Compilers for Modern

Architectures: A Dependence-Based
Approach”, Allen and Kennedy, 2002, Ch. 2.

CS6963
 2 
L5: Wri-ng Correct Programs 

Administrative
•  Next assignment (a homework) given out

on Monday

CS6963
 3 
L5: Wri-ng Correct Programs 

Is this CUDA code correct?
__host callkernel() {

 dim3 blocks(10);

 dim3 threads(100);

 float *d_array;

 …

 cudaMalloc(&d_array1,…);

 cudaMalloc(&d_array2,…);

 kernelcode<<<blocks,threads,
0>>>(d_array1, d_array2,
1000);

}

CS6963
 4 
L5: Wri-ng Correct Programs 

__global kernelcode(float * d_array1,
d_array2, int N) {

 float result;

 for (int i=0; i<N; i++) {
 d_array1[threadIdx] +=
 d_array2[blockIdx][i];

 }

 for (int i=1; i<N; i++) {
 result += d_array1[threadIdx-1];

 }
}

2/11/09 

2 

Threads Access Shared Memory!

•  Global memory and shared memory within an
SM can be freely accessed by multiple
threads

•  Requires appropriate sequencing of memory
accesses across threads to same location if
at least one access is a write
–  Recall using __syncthreads() within a thread block

for synchronization
–  Not to be used for different blocks within a grid

CS6963
 5 
L5: Wri-ng Correct Programs 

Is this CUDA code correct?
__host callkernel() {

 dim3 blocks(10);

 dim3 threads(100);

 float *d_array;

 …

 cudaMalloc(&d_array1,…);

 cudaMalloc(&d_array2,…);

 kernelcode<<<blocks,threads,
0>>>(d_array1, d_array2,
1000);

}

CS6963
 6 
L5: Wri-ng Correct Programs 

__global kernelcode(float * d_array1,
d_array2, int N) {

 for (int i=0; i<N; i++) {

 d_array1[threadIdx] +=
 d_array2[blockIdx][i];

 }

 __syncthreads();

 for (int i=1; i<N; i++) {

 result += d_array1[threadIdx-1];

 }

}

More Formally:
Race Condition or Data Dependence

•  A race condition exists when the result
of an execution depends on the timing
of two or more events.

•  A data dependence is an ordering on a
pair of memory operations that must be
preserved to maintain correctness.

CS6963
 7 
L5: Wri-ng Correct Programs 

How about other Shared Memory
Architectures?

•  Race detection software (e.g., Intel
ThreadChecker)
–  Trace memory accesses for each thread
–  Compare addresses accessed by each thread
–  Race condition exists if, between synchronization

points,
•  multiple threads access the same memory

location
•  and, at least one access is a write

CS6963
 8 
L5: Wri-ng Correct Programs 

2/11/09 

3 

What can we do to debug
parallelization in CUDA?

•  -deviceemu code (to be emulated on host)
– Support for pthread debugging?

•  Can compare GPU output to CPU output, or
compare GPU output to device emulation
output
– Race condition may still be present

•  Or can (try to) prevent introduction of
race conditions (remainder of lecture)

CS6963
 9 
L5: Wri-ng Correct Programs 

Data Dependence
•  Definition:

Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same
program statement.

•  Two important uses of data dependence information (among others):
Parallelization: no data dependence between two computations 
 parallel execution safe
Locality optimization: absence of data dependences & presence of
 reuse  reorder memory accesses for
 better data locality (next week)

10 
L5: Wri-ng Correct Programs 

CS6963

Data Dependence of Scalar
Variables

True (flow) dependence
 a =
 = a

Anti-dependence
 = a
 a =

Output dependence
 a =
 a =

Input dependence (for locality)
 = a

 = a

Definition: Data dependence exists from a reference
instance i to i’ iff
 either i or i’ is a write operation
 i and i’ refer to the same variable
 i executes before i’

CS6963
 11 
L5: Wri-ng Correct Programs 

12 
L5: Wri-ng Correct Programs 

Some Definitions (from Allen &
Kennedy)

•  Definition 2.5:
–  Two computations are equivalent if, on the same inputs,

•  they produce identical outputs
•  the outputs are executed in the same order

•  Definition 2.6:
–  A reordering transformation

•  changes the order of statement execution
•  without adding or deleting any statement executions.

•  Definition 2.7:
–  A reordering transformation preserves a dependence if

•  it preserves the relative execution order of the dependences’
source and sink.

CS6963

2/11/09 

4 

Fundamental Theorem of
Dependence

•  Theorem 2.2:
–  Any reordering transformation that preserves every dependence in

a program preserves the meaning of that program.
•  Now we will discuss abstractions and algorithms to

determine whether reordering transformations preserve
dependences...

13 
L5: Wri-ng Correct Programs 

CS6963

Parallelization as a Reordering
Transformation in CUDA

14 
L5: Wri-ng Correct Programs 

CS6963

__host callkernel() {

 dim3 blocks(bx,by);

 dim3 threads(tx,ty,tz);

 …
kernelcode<<<blocks,threads0>>>(<
args>);

}

__global kernelcode(<args>) {

 /* code refers to threadIdx.x,
threadIdx.y, threadIdx.z, blockIdx.x,
blockIdx.y */

}

__host callkernel() {

for (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

for (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

for (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

for (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

for (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

EQUIVALENT?

Forall (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering
transformation)

Example
 forall (i=1; i<=n; i++)
 A[i] = B[i] + C[i];

Meaning?

In Today’s Lecture: Parallelizable Loops

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel
programming models?

15 
L5: Wri-ng Correct Programs 

CS6963

CUDA Equivalent to “Forall”

16 
L5: Wri-ng Correct Programs 

CS6963

__host callkernel() {

forall (int bIdx_x=0; bIdx_x<bx; bIdx_x++) {

forall (int bIdx_y=0; bIdx_y<by; bIdx_y++) {

forall (int tIdx_x=0; tIdx_x<tx; tIdx_x++) {

forall (int tIdx_y=0; tIdx_y<ty; tIdx_y++) {

forall (int tIdx_z=0; tIdx_z<tz; tIdx_z++) {

/* code refers to tIdx_x, tIdx_y, tIdx_z,
bIdx_x, bIdx_y */

}}}}}

2/11/09 

5 

Data Dependence for Arrays

•  Recognizing parallel loops (intuitively)
–  Find data dependences in loop
–  No dependences crossing iteration boundary 

parallelization of loop’s iterations is safe

for (i=2; i<5; i++)
 A[i] = A[i-2]+1;

for (i=1; i<=3; i++)
 A[i] = A[i]+1;

Loop-
Carried
dependence

Loop-
Independent
dependence

17 
L5: Wri-ng Correct Programs 

CS6963

1. Characterize Iteration Space

•  Iteration instance: represented as coordinates in iteration space
–  n-dimensional discrete cartesian space for n deep loop nests

•  Lexicographic order: Sequential execution order of iterations
[1,1], [1,2], ..., [1,6],[1,7],
[2,2], [2,3], ..., [2,6], ...

•  Iteration I (a vector) is lexicographically less than I’, I<I’ , iff
 there exists c (i1, …, ic-1) = (i’1, …, i’c-1) and ic < i’c .

j 

for (i=1;i<=5; i++)
 for (j=i;j<=7; j++)
 ... 

1 ≤ i ≤ 5 
i ≤ j ≤ 7 

i 

18 
L5: Wri-ng Correct Programs 

CS6963

2. Compare Memory Accesses across
Dynamic Instances in Iteration Space

N = 6; 
for (i=1; i<N; i++) 
    for (j=1; j<N; j++) 
          A[i+1,j+1] = A[i,j] * 2.0; 

i 

j 

How to describe relationship between two dynamic instances?
 e.g., I=[1,1] and I’=[2,2]

I=[1,1], 
Write A[2,2] 

I’=[2,2], 
Read A[2,2] 

19 
L5: Wri-ng Correct Programs 

CS6963

Distance Vectors

•  Distance vector = [1,1]
•  A loop has a distance vector D if there exists data

dependence from iteration vector I to a later vector
I’, and D = I’ - I.

•  Since I’ > I, D >= 0.
(D is lexicographically greater than or equal to 0).

N = 6; 
for (i=1; i<N; i++) 
    for (j=1; j<N; j++) 
          A[i+1,j+1] = A[i,j] * 2.0; 

20 
L5: Wri-ng Correct Programs 

CS6963

2/11/09 

6 

Distance and Direction Vectors
•  Distance vectors: (infinitely large set)

•  Direction vectors: (realizable if 0 or lexicographically
positive)
 ([=,=],[=,<],[<,>], [<,=], [<.<])

•  Common notation:
 0 =

+ <
 - >
 +/- *

21 
L5: Wri-ng Correct Programs 

CS6963

Parallelization Test:
1-Dimensional Loop

•  Examples:

 for (j=1; j<N; j++) for (j=1; j<N; j++)
 A[j] = A[j] + 1; B[j] = B[j-1] + 1;

•  Dependence (Distance and Direction) Vectors?

•  Test for parallelization:

–  A loop is parallelizable if for all data dependences D e D,
D = 0

22 
L5: Wri-ng Correct Programs 

CS6963

n-Dimensional Loop Nests
for (i=1; i<=N; i++)
 for (j=1; j<=N; j++)
 A[i][j] = A[i][j-1]+1;

for (i=1; i<=N; i++)
 for (j=1; j<=N; j++)
 A[i][j] = A[i-1][j+1]+1;

•  Distance and direction vectors?
•  Definition:

D = (d1, … dn) is loop-carried at level i if di is the first
nonzero element.

23 
L5: Wri-ng Correct Programs 

CS6963

A Few Words about n-
Dimensional Arrays in C

•  Largely conceptual, due to difficulty in
expressing this in C for dynamically allocated
data structures

•  Imagine the following macros,

 #define 2dAccess(i,j,dim_i) \
 i+j*dim_i
 #define 3dAccess(i,j,k,dim_i,dim_j) \
 i+j*dim_i + k*dim_i*dim_j

24 
L5: Wri-ng Correct Programs 

CS6963

2/11/09 

7 

Test for Parallelization
The i th loop of an n-dimensional loop is parallelizable if

there does not exist any level i data dependences.

The i th loop is parallelizable if for all dependences
 D = (d1, … dn),
either
 (d1, … di-1) > 0
or
 (d1, … di) = 0

25 
L5: Wri-ng Correct Programs 

CS6963

Safe Parallelization of CUDA Code
•  Dependences must be carried by

–  (a) Loops that execute on the host
–  OR, loops that execute within a kernel function

*May be able to use synchronization for dependences
across threads, but not across blocks (subtle distinction)

L5: Wri-ng Correct Programs CS6963

. . .

. . .

Grid 1

(a)  Dependences 
carried by host code 

__global compute() { 
    for (j=1; j<n; j++)  
         A[threadIdx][j] =  
               A[threadIdx][j‐1]; 
} 

(b) Dependence carried 
within thread code 

Parallelization Algorithm

•  For each pair of dynamic accesses to the same
array within a loop nest:

–  determine if there exists a dependence
between that pair

•  Key points:

–  n2 tests for n accesses in loop!
–  a single access is compared with itself
–  includes accesses in all loops within a nest

27 
L5: Wri-ng Correct Programs 

CS6963

Dependence Testing
•  Question so far:

•  What is the distance/direction (in the
iteration space) between two dynamic
accesses to the same memory location?

•  Simpler question:
•  Can two data accesses ever refer to the

same memory location?
for (i=11;i<=20;i++) for (i=11;i<=20;i++)
 A[i] = A[i-1]+ 3; A[i] = A[i-10]+ 1;

28 
L5: Wri-ng Correct Programs 

CS6963

2/11/09 

8 

Restrict to an Affine Domain
for (i=1; i<N; i++)
 for (j=1; j<N j++) {
 A[i+2*j+3, 4*i+2*j, 3*i] = ...;
 ... = A[1, 2*i+1, j];

}

•  Only use loop bounds and array indices
which are integer linear functions of loop variables.

•  Non-affine example:
 for (i=1; i<N; i++)

 for (j=1; j<N j++) {
 A[i*j] = A[i*(j-1)];

 A[B[i]] = A[B[j]];
 }

29 
L5: Wri-ng Correct Programs 

Equivalence to Integer
Programming

•  Need to determine if F(i) = G(i’), where i and i’ are iteration
vectors, with constraints i,i’ >= L, U>= i, i’

•  Example:
 for (i=1; i<=100; i++)

 A[i] = A[i-1];
•  Inequalities:

 1 <= iw <= 100, ir = iw - 1, ir <= 100
 integer vector I, AI <= b

•  Integer Programing is NP-complete

–  O(size of the coefficients)

–  O(nn)

30 
L5: Wri-ng Correct Programs 

CS6963

Example

Solve

[] ‐1 0 
 1 0 
‐1 1 
1 ‐1 
0 1 

[] iw 
ir  ≤ [] 1 

100 
‐1 
1 
100 

0 ≤ iw ≤ 100, ir = iw‐1, ir ≤ 100  

Solution exist?

Replace instances of iw with ir
Eliminate ir
Simplifies to 0 < 99 (yes, solution exists!)

31 
L5: Wri-ng Correct Programs 

CS6963

Introducing Omega Calculator
•  A software tool used in compilers
•  Description:

–  Solves “Presburger formulas”, logical formulas built
from affine constraints over integer variables, logical
connectives and quantifiers.

–  Can formulate these dependence problems, and derive
existence of dependences and distances.

•  Relevant to locality optimizations as well, next
week’s focus

•  Can download from:
•  http://www.cs.utah.edu/~chunchen/omega/

•  Also available from CADE Linux machines in:
–  ~cs6963/bin/oc

CS6963
 32 
L5: Wri-ng Correct Programs 

2/11/09 

9 

Using Omega Calculator
•  Example:

 for (i=2; i<=100; i++)
 A[i] = A[i-1];

•  Define relation iw = i, and iw = ir-1 in the iteration space 2
<= i <= 100.
 R := {[iw] -> [ir] :

 2 <= iw, ir <= 100 /* iteration space */
 && iw < ir /* looking for loop-carried dep */
 && iw = ir-1}; /* can they be the same? */

R := {[iw] -> [ir] : 2 <= iw, ir <= 100 && iw < ir && iw = ir – 1};

Result: {[iw] -> [iw+1] : 2 <= iw <= 99}

33 
L5: Wri-ng Correct Programs 

CS6963

Using Omega Calculator, cont.
•  Example:

 for (i=20; i<=29; i++)
 A[i] = A[i-10];

•  Define relation iw = i, and iw = ir-10 in the iteration space
20 <= i <= 29.
 R := {[iw] -> [ir] :

 20 <= iw, ir <= 29 /* iteration space */
 && iw < ir /* looking for loop-carried dep */
 && iw = ir-10}; /* can they be the same? */

R := {[iw] -> [ir] : 20 <= iw, ir <= 29 && iw < ir && iw = ir – 10};

Result: {[iw] -> [ir] : FALSE }

34 
L5: Wri-ng Correct Programs 

CS6963

2-D Omega Example
•  Example:
 for (i=0; i<n; i++)
 for (j=i; j<n; j++)
 a[i][j+1] = a[n][j];

•  Formula (more complex):
 R := {[iw,jw] -> [ir,jr] : exists(n : /* unbound variable */
 1 <= iw <= n && iw <= jw <= n /* iteration space */
 && 1 <= ir <= jr <= n /* loop-carried dependence? */
 && jw+1 = jr && ir = n)}; /* access expression */

 Result: {[iw,jw] -> [ir,jr] : FALSE }

35 
L5: Wri-ng Correct Programs 

CS6963

Calculating Distance Vectors
•  Example from before:
 for (i=1; i<=100; i++)

 for (j=1; j<=100; j++)
 A[i][j] = A[i-1][j+1]+1;

•  Omega formula:
 R := {[iw, jw] -> [di, dj] : exists (ir, jr : /* read iters unbound */

 1 <= iw, ir <= 100 && 1 <= jw, jr <= 100 /* iteration space */
 && iw = ir -1 && jw = jr + 1 && /* access exprs */
 && di = ir – iw && dj = jr – jw)}; /* distances */

Result: {[iw,jw] -> [1,-1] : 1 <= iw <= 99 && 2 <= jw <= 100}

36 
L5: Wri-ng Correct Programs 

CS6963

2/11/09 

10 

Aside: What about dependences
for other data structures?

•  Pointer-based
– Pointer alias analysis
– Shape analysis

•  Objects
– Escape analysis

•  In practice
– Lots of #pragma and special flags for

programmer to assert no dependence

37 
L5: Wri-ng Correct Programs 

CS6963

Homework Assigned Monday
•  Example questions

– Given some sequential code, do the following:
•  Show distance vectors and decide which loop can be

parallelized
•  Show Omega dependence relations
•  Show correct CUDA code

– Memory hierarchy optimization
•  Simple tiling example
•  Identify safety of code transformations
•  Given description of goal, show CUDA code to

manage memory hierarchy

38 
L5: Wri-ng Correct Programs 

CS6963

Summary of Lecture
•  Data dependence can be used to determine the

safety of reordering transformations such as
parallelization
–  preserving dependences = preserving “meaning”

•  Iteration, distance and direction vectors are
abstractions for understanding whether reordering
transformations preserve dependences.
–  Parallelization of CUDA kernel programs can be viewed as a

reordering transformation of a sequential implementation
•  Dependence testing on array accesses in loops has

been shown to be equivalent to integer programming.
–  Omega calculator demonstrated

39 
L5: Wri-ng Correct Programs 

CS6963

What’s Ahead
•  Next week

– Homework assignment on Monday
– Managing the memory hierarchy
– Initial discussion of projects

•  February 16: President’s Day holiday
•  February 18:

– Jim Guilkey to present MPM for projects
•  February 20 (Friday):

– Make up class (we’ll discuss control flow)
40 

L5: Wri-ng Correct Programs 
CS6963

