2/11/09

L5: Writing Correct
Programs, cont.

Outline

* How to tell if your parallelization is
correct?

* Race conditions and data dependences

+ Tools that detect race conditions

« Abstractions for writing correct parallel
code
— Mapping these abstractions to CUDA

+ Reading (if you can find it):
— "Optimizing Compilers for Modern

Architectures: A Dependence-Based
Approach”, Allen and Kennedy, 2002, Ch. 2.

.)) 5
Administrative Is this CUDA code corrects:

* Next assignment (a homework) given out
on Monday

CS6963 3
L5: Writing Correct Programs

THE
U UNIVERSITY
OF UTAH

__global kernelcode(float * d_array1,
d_array2, int N) {
float result;

__host callkernel() {
dim3 blocks(10];
dim3 threads(100};
float *d_array; for (int i=0; i<N; i++) {

d_array1[threadldx] +=
d_array2[blockldx][i];

cudaMalloc(&d_array1,...);)

cudaMalloc(&d_array2,...);

kernelcode<<<blocks,threads,
0>>>(d_array1, d_array2,
1000);)

} }

for (int i=1; i<N; i++] {
result += d_array[threadldx-1];

CS6963 4
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

Threads Access Shared Memory!

+ Global memory and shared memory within an
SM can be freely accessed by multiple
threads

+ Requires appropriate sequencing of memory
accesses across threads to same location if
at least one access is a write

— Recall using __syncthreads() within a thread block
for synchronization

— Not to be used for different blocks within a grid

CS6963 5
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Is this CUDA code correct?

__host callkernel() {
dim3 blocks(10];
dim3 threads(100});
float *d_array;

__global kernelcode(float * d_array1,
d_array2, int NJ {

for (int i=0; i<N; i++) {
d_array1[threadldx] +=

d_array2[blockldx][i];
cudaMalloc(&d_array1,...);)

cudaMalloc(&d_array2,...);

kernelcode<<<blocks,threads,
0>>>(d_array1, d_array2,
1000

} }

__syncthreads(};
for (int i=1; i<N; i++) {
result += d_array1[threadldx-1];

)

CS6963 6

THE
u UNIVERSITY
OF UTAH

L5: Writing Correct Programs

More Formally:
Race Condition or Data Dependence

* A race condition exists when the result
of an execution depends on the timing
of two or more events.

* A data dependence is an ordering on a
pair of memory operations that must be
preserved to maintain correctness.

CS6963 7
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

How about other Shared Memory
Architectures?

* Race detection software (e.g., Intel
ThreadChecker)
— Trace memory accesses for each thread
— Compare addresses accessed by each thread

— Race condition exists if, between synchronization
points,

+ multiple threads access the same memory
location

« and, at least one access is a write

CS6963 8
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

What can we do to debug Data Dependence

parallelization in CUDA? . Definition:
Two memory accesses are involved in a data dependence if they may

. -deviceemu code (1_0 be emulated on hOST) ;lif;a; to the same memory location and one of the references is a

— Support for pthread debugging?

A data dependence can either be between two distinct program

+ Can compare GPU output to CPU output, or statements or two different dynamic executions of the same
compare GPU output to device emulation program statement.
OUTPUT Two important uses of data dependence information (among others):
— Race condition may still be present Parallelization: no data dependence between two computations =
. . parallel execution safe
* Or can (TI"Y TO) pr‘even‘l‘ introduction of Locality optimization: absence of data dependences & presence of
race conditions (remainder of lecture) reuse > reorder memory accesses for

better data locality (next week)

CS6963 9 u s CS6963 10 u e
. UNIVERSITY . UNIVERSITY
L5: Writing Correct Programs SEuen L5: Writing Correct Programs S

Data Dependence of Scalar Some Definitions (from Allen &
Variables Kennedy)

+ Definition 2.5:
— Two computations are equivalent if, on the same inputs,
-a s
. + they produce identical outputs
Anh-dependenc:ea * the outputs are executed in the same order

True (flow) dependence
a =

a - . inition 2.6
Output dependence Definition '.6 .

a = — A reordering transformation
+ changes the order of statement execution

a =
Input dependence (for locali
P P za 0 ke + without adding or deleting any statement executions.

=a + Definition 2.7:
Definition: Data dependence exists from a reference — A reordering transformation preserves a dependence if
instance i to i' iff « it preserves the relative execution order of the dependences’

either i or i" is a write operation
i and i' refer fo the same variable
i executes before i’

CS6963 1 U s CS6963 2 e
. UNIVERSITY L5: Writing Correct Programs u UNIVERSITY
L5: Writing Correct Programs SEuen AR

source and sink.

2/11/09

Fundamental Theorem of
Dependence

+ Theorem 2.2:
— Any reordering transformation that preserves every dependence in
a program preserves the meaning of that program.
* Now we will discuss abstractions and algorithms to
determine whether reordering transformations preserve
dependences...

CS6963 13
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Parallelization as a Reordering
Transformation in CUDA

__host callkernel() { __host callkernel() {
dim3 blocks(bx,by);
dim3 threads(tx.ty.tz); for (int bldx_x=0; bldx_x<bx; bldx_x++]) {
for (int bldx_y=0; bldx_y<by; bldx_y++) {
kernelcode<<<blocks,threads0>>>[< for (int tldx_x=0; tldx_x<tx; tldx_x++) {
args>} for (int tldx_y=0; tidx_y<ty; tidx_y++] {
) for (int tldx_z=0; tidx_z<tz tldx_z++] {
__global kernelcode(<args>] {
/ * code refers to threadldx.x,
threadldx.y, threadldx.z, blockldx.x,
blockldxy */

/* code refers to tldx_x, tldx_y, tldx_z,
bldx_x, bldx_y */

mh

EQUIVALENT?

CS6963 14
L5: Writing Correct Programs

THE
UNIVERSITY
OF UTAH

In Today's Lecture: Parallelizable Loops
Forall (or CUDA kernels or Doall) loops:

Loops whose iterations can execute in parallel (a particular reordering
transformation)

Example
forall (i=1; i<=n; i++)
A[i] = B[i] + C[i];
Meaning?

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel
programming models?

CS6963 15
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

CUDA Equivalent to “Forall”

__host callkernel() {

forall (int bldx_x=0; bldx_x<bx; bldx_x++) {
forall {int bldx_y=0; bldx_y<by; bldx_y++) {
forall (int tldx_x=0; tldx_x<tx; tldx_x++) {
forall {int tidx_y=0; tldx_y<ty; tidx_y++) {
forall (int tldx_z=0; tldx_z<tz tldx_z++) {

/ * code refers to tldx_x, tldx_y, tldx_z,
bldx_x, bldx_y */

mh

CS6963 16
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

Data Dependence for Arrays

'.'{)m@
dependence
Loop-

o Independent

dependence

i<5; it+)
= A[i-2]+1;

* Recognizing parallel loops (intuitively)
— Find data dependences in loop

- No dependences crossing iteration boundary =
parallelization of loop's iterations is safe

CS6963 17
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

1. Characterize Iteration Space

for (i=1;i<=5; i++)
for (j=1i;j<=7; j++)

i
« Iteration instance: represented as coordinates in iteration space

— n-dimensional discrete cartesian space for ndeep loop nests
« Lexicographic order: Sequential execution order of iterations
(L1, 2], .. [1,6],[1,7],
[22].[23] ... [26] .

+ TIteration I (a vector)is Iaxncogm hically less than T, II', iff
there exists ¢ (i, ..., icq) = 51, v ieg)andic < i,

€S6963 18

THE
. UNIVERSITY
L5: Writing Correct Programs u S

2. Compare Memory Accesses across
Dynamic Instances in Iteration Space

N=6;
for (i=1; i<N; i++)
for (j=1; j<N; j++) i
Ali+1,j+1] = A[i,j] * 2.0;

Vi
]

j

How to describe relationship between two dynamic instances?
eg., I=[1,1]and I'=[2,2]

=[2,2],

Read A[2,2]
1=[1,1],
Write A[2,2]

CS6963 19
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Distance Vectors

N=6;
for (i=1; i<N; i++)
for (j=1; j<N; j++)
Ali+1,7+1] = Afij] * 2.0;

+ Distance vector = [1,1]
+ A loop has a distance vector D if there exists data
depengerlg:e f;om I]‘:I'CI"CITIOH vector I to a later vector
, an .

* SinceI'>I, D >=
is Iex1cographtcal|y greater than or equal to 0).

CS6963 20
L5: Writing Correct Programs

THE
UUNIVERSIT\
OF UTAH

2/11/09

Distance and Direction Vectors

+ Distance vectors: (infinitely large set)

[HHERHMRHRURIARR

+ Direction vectors: (realizable if O or lexicographically
positive)
(=2L=LLe2) [42) [<D)
+ Common notation:
0 =
+ <
- >

+/- *

CS6963 21
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Parallelization Test:
1-Dimensional Loop

+ Examples:

for (j=1; j<N; j++)
A[jl=A[j]+ L

+ Dependence (Distance and Direction) Vectors?

for (j=1; j<N; j++)
B[j]1=B[j-1]+ L

+ Test for parallelization:

— A loop is parallelizable if for all data dependences D e D,

D=0

CS6963 22
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

n-Dimensional Loop Nests

for (i=1; i<=N; i++)
for (j=1; j<=N; J++)
A[i]1[3] = A[i]1[3-11+1;

for (i=1; i<=N; i++)

for (3=1; J<=N; j++)
A[i][3] = A[i-1][J+1]+1;

» Distance and direction vectors?
» Definition:

D =(d,, ... d,) is loop-carried at level /if d; is the first
nonzero element.

CS6963 23
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

A Few Words about n-
Dimensional Arrays in C

* Largely conceptual, due to difficulty in
expressing this in C for dynamically allocated
data structures

+ Imagine the following macros,

#define 2dAccess(i,j,dim_i) \
i+j*dim_i

#define 3dAccess(i,j k,dim_i,dim_j) \
i+j*dim_i + k*dim_i*dim_j

CS6963 24
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

Test for Parallelization

The /7 th loop of an n-dimensional loop is parallelizable if
there does not exist any level / data dependences.

The /th loop is parallelizable if for all dependences

D=, ...d),
either

(dy ... diy) >0
or

(dy4, ...d)=0

CS6963 25

L5: Writing Correct Programs

Safe Parallelization of CUDA Code

+ Dependences must be carried by
— (a) Loops that execute on the host
— OR, loops that execute within a kernel function

*May be able to use synchronization for dependences
across threads, but not across blocks (subtle distinction)

(a) Dependences
carried by host code

__global compute() {
for (j=1; j<n; j++)
Althreadldx][j] =
Althreadldx][j-1];

(b) Dependence carried
within thread code

CS6963

THE
U UNIVERSITY
OF UTAH

THE
u UNIVERSITY
OF UTAH

Parallelization Algorithm

For each pair of dynamic accesses to the same
array within a loop nest:

— determine if there exists a dependence
between that pair

* Key points:
— n? tests for n accesses in loop!

— asingle access is compared with itself
— includes accesses in all loops within a nest

CS6963 27

L5: Writing Correct Programs

THE
U UNIVERSITY
OF UTAH

Dependence Testing

* Question so far:

» What is the distance/direction (in the
iteration space) between two dynamic
accesses to the same memory location?

+ Simpler question:

+ Can two data accesses ever refer to the

same memory location?
for (i=11;i<=20;i++)

for (i=11;i<=20;i++)
A[i] = A[i-1]+ 3;

A[i] = A[i-10]+ 1;

CS6963 28

L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

Equivalence to Integer
Restrict to an Affine Domain Programming

for (i=1; i<N; i++)

for (j=1; J<N j++) { R o
A[i42%343, 4%i+2%§, 3%i] = ...; » Need to determine if F(i) = 6(i"), where i and i’ are iteration
.= A[1, 2%i+l, 3]; vectors, with constraints i,i'>= L, U>= i, i’
}
+ Example:
+ Only use loop bounds and array indices for (i=1; i<=100; i++)
which are integer linear functions of loop variables. Ali] = ALi-1];
+ Inequalities:
1< iw <= 100, ir=iw-1, ir <= 100

* Non-affine example:
for (i=1; i<N; i++)
for (j=1; <N j++) {
A[i*]j] = A[i*(j-1)];
A[B[i]] = A[B[]]];
} - O(size of the coefficients)

- o)

> U {JHIEJIVE RSITY ©S6963 % H{IEIIVERSITY
LS: Writing Correct Programs OF UTAH LS: Writing Correct Programs OF UTAH

integer vector I, AI<=b

+ Integer Programing is NP-complete

Example Introducing Omega Calculator

+ A software tool used in compilers
+ Description:

0<iw <100, ir =iw-1, ir <100

Solve — Solves "Presburger formulas”, logical formulas built
10 1 from affine constraints over integer variables, logical
o 100 connectives and quantifiers.
11 w < 1 . . — Can formulate these dependence problems, and derive
11 ir 1 Solution exist? existence of dependences and distances.
01 100 * Relevant to locality optimizations as well, next

week's focus
+ Can download from:
+ http://www.cs.utah.edu/~chunchen/omega/
Replace instances of iw with ir Also available from CADE Linux machines in:

Eliminate ir N .
Simplifies o 0 « 99 (yes, solution exists!) - ~s6963/bin/oc

CS6963 31 u s CS6963 32 u e
. UNIVERSITY . UNIVERSITY
L5: Writing Correct Programs SEuen L5: Writing Correct Programs AR

2/11/09

Using Omega Calculator

+ Example:
for (i=2; i«<=100; i++)
Ali] = A[i-1];
. (D_eifjp?OBelaﬁon iw = i, and iw = ir-1 in the iteration space 2
R:= {[iw] -> [ir]:
2 <= iw, ir <= 100 /* iteration space */
&& iw < ir /* looking for loop-carried dep */
&& iw = ir-1}; /* can they be the same? */

R:={[iw] -> [ir]: 2 <= iw, ir <= 100 && iw < ir && iw = ir - 1};

Result: {[iw] -> [iw+1] : 2 <= iw <= 99}

CS6963 33
LS: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Using Omega Calculator, cont.

+ Example:
for (i=20; i<=29; i++)
Ali]l= A[i-10];
+ Define relation iw = i, and iw = ir-10 in the iteration space
20<=i<=29.
R:= {[iw]->[ir]:
20 <= iw, ir<= 29 /* iteration space */
&&iw < ir /* looking for loop-carried dep */
&& iw = ir-10); /* can they be the same? */

R = {[iw] -> [ir] : 20 <= iw, ir <= 29 && iw < ir && iw = ir - 10};

Result: {[iw] -> [ir] : FALSE }

CS6963 34
LS: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Result:

2-D Omega Example

Example:
for (i=0; in; i++)
for (j=i: jen: j++)

afillj+1] = aln](j1:

Formula (more complex):

R := {[iw,jw] -> [ir,jr]: exists(n :
T<ziw<=nd&&iw<= jw<=n
&& l<=ir<=jr<=n
&& jw+l = jr &&ir = n)k;

/* unbound variable */

/* iteration space */

/* loop-carried dependence? */
/* access expression */

{[iw,jw] -> [ir,jr] : FALSE }

CS6963 35
LS: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Calculating Distance Vectors

+ Example from before:
for (i=1; i<=100; i++)
for (j=1; j<=100; Jj++)
A[11[3] = A[i-1][3+1]+1;

+ Omega formula:

R := {[iw, jw] -> [di, dj] : exists (ir, jr: /* read iters unbound */
1<=iw, ir <= 100 && 1 <= jw, jr <= 100 /* iteration space */
&&iw = ir -18& jw = jr+ 1&& /* access exprs */

&& di=ir-iw && dj = jr - jw)k /* distances */

Result: {[iw,jw] -> [1,-1] : 1 <= iw <= 99 && 2 <= jw <= 100}

CS6963 36
LS: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/11/09

Aside: What about dependences
for other data structures?

* Pointer-based
— Pointer alias analysis
— Shape analysis

* Objects
— Escape analysis

* Inpractice

— Lots of #pragma and special flags for
programmer to assert no dependence

CS6963 37
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Homework Assigned Monday

+ Example questions
— Given some sequential code, do the following:
+ Show distance vectors and decide which loop can be
parallelized
+ Show Omega dependence relations
+ Show correct CUDA code
— Memory hierarchy optimization
+ Simple tiling example
+ Identify safety of code transformations
+ Given description of goal, show CUDA code to
manage memory hierarchy

CS6963 38
LS: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Summary of Lecture

+ Data dependence can be used to determine the
safety of reordering transformations such as
parallelization

— preserving dependences = preserving "meaning”

+ Iferation, distance and direction vectorsare
abstractions for understanding whether reordering
transformations preserve dependences.

— Parallelization of CUDA kernel programs can be viewed as a
reordering transformation of a sequential implementation

+ Dependence testing on array accesses in loops has
been shown to be equivalent fo integer programming.

— Omega calculator demonstrated

CS6963 39
L5: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

What's Ahead

* Next week
— Homework assignment on Monday
— Managing the memory hierarchy
— Initial discussion of projects
* February 16: President’'s Day holiday
* February 18:
— Jim Guilkey to present MPM for projects
* February 20 (Friday):

— Make up class (we'll discuss control flow)

THE
u UNIVERSITY
OF UTAH

CS6963 40
LS: Writing Correct Programs

10

