
1/26/09

1

CS6963 

L4: Hardware Execution Model and
Overview

January 26, 2009

Administrative

•  First assignment out, due Friday at 5PM
– Any questions?

•  New mailing list:
– cs6963-discussion@list.eng.utah.edu
– Please use for all questions suitable for the

whole class
– Feel free to answer your classmates

questions!

2 
L4: Hardware Overview CS6963 

Outline

•  Single Instruction Multiple Data (SIMD)
•  Multithreading
•  Scheduling instructions for SIMD,

multithreaded multiprocessor
•  How it comes together
•  Reading:
 Ch 2.3 in Grama et al.

3 
L4: Hardware Overview CS6963 

Recall Execution Model

I. SIMD Execution of
warpsize=M threads (from
single block)
–  Result is a set of instruction

streams roughly equal to #
blocks in thread divided by
warpsize

II. Multithreaded Execution
across different instruction
streams within block
–  Also possibly across different

blocks if there are more blocks
than SMs

III. Each block mapped to
single SM
–  No direct interaction across

SMs

Device 

Mul*processor N 

Mul*processor 2 
Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

4 
L4: Hardware Overview CS6963 

1/26/09

2

CS6963 
5 

L4: Hardware Overview 

Predominant Control Mechanisms:
Some definitions

Name Meaning Examples

Single Instruction,
Multiple Data
(SIMD)

A single thread of
control, same
computation applied
across “vector” elts

Array notation as in
Fortran 95:
A[1:n] = A[1:n] + B[1:n]
Kernel fns w/in block:
compute<<<gs,bs,msize>>>

Multiple Instruction,
Multiple Data
(MIMD)

Multiple threads of
control, processors
periodically synch

OpenMP parallel loop:
forall (i=0; i<n; i++)
Kernel fns across blocks
compute<<<gs,bs,msize>>>

Single Program,
Multiple Data
(SPMD)

Multiple threads of
control, but each
processor executes
same code

Processor-specific code:
if ($threadIdx == 0) {
}

Slide source: Ananth Grama 
6 

L4: Hardware Overview 

SIMD vs. MIMD Processors

I. SIMD

•  Motivation:
– Data-parallel computations map well to

architectures that apply the same
computation repeatedly to different data

– Conserve control units and simplify
coordination

•  Analogy to light switch

7 
L4: Hardware Overview 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucDon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

8 
L4: Hardware Overview 

1/26/09

3

threadIdx 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucDon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

LDC 0, &(dout+ 
                 threadIdx) 

threadIdx threadIdx 

+  +  + 

&dout  &dout  &dout 

Each “core” 
iniDalizes data 
from addr 
based on its 

own threadIdx 

9 
L4: Hardware Overview CS6963 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucDon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

/* int i=0; */ 
LDC 0, R3 

Each “core” 
iniDalizes its 
own R3 

0  0  0 

10 
L4: Hardware Overview CS6963 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucDon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO 

Each “core” 
performs  same 
operaDons from 
its own registers 

Etc. 

11 
L4: Hardware Overview  CS6963 

12 
L4: Hardware Overview 

12 

Overview of SIMD Programming
•  Vector architectures
•  Early examples of SIMD supercomputers
•  TODAY Mostly

–  Multimedia extensions such as SSE-3
–  Graphics and games processors (example, IBM Cell)
–  Accelerators (e.g., ClearSpeed)

•  Is there a dominant SIMD programming model?
–  Unfortunately, NO!!!

•  Why not?
–  Vector architectures were programmed by scientists
–  Multimedia extension architectures are programmed

by systems programmers (almost assembly language!)
or code is automatically generated by a compiler

–  GPUs are programmed by games developers (domain-
specific)

–  Accelerators typically use their own proprietary tools

1/26/09

4

Slide source: Jaewook Shin 
13 

L4: Hardware Overview 
13 

Aside: Multimedia Extensions like SSE-3
•  COMPLETELY DIFFERENT ARCHITECTURE!
•  At the core of multimedia extensions

–  SIMD parallelism
–  Variable-sized data fields:

 Vector length = register width / type size

0 127
V31 

. . .

1 2 3 4 5 6 13 12 11 10 9 8 7 16 15 14

1

1

2

2

3

3

4

4

5 6 7 8

V0 

V1 

V2 

V3 

V4 

V5 

Sixteen 8‐bit Operands 

Eight 16‐bit Operands 

Four 32‐bit Operands 

Example: PowerPC AltiVec

WIDE UNIT 

Slide source: Jaewook Shin 
14 

L4: Hardware Overview 

Aside: Multimedia Extensions
Scalar vs. SIMD Operation

Scalar: add r1,r2,r3

1

2
+

3

r3

r2

r1

SIMD: vadd<sws> v1,v2,v3 2 3 4 1

2 3 4 1
+ + + +

4 6 8 2

v3

v2

v1

lanes 

II. Multithreading: Motivation

•  Each arithmetic instruction includes the
following sequence

•  Memory latency, the time in cycles to
access memory, limits utilization of
compute engines

Ac*vity  Cost  Note 

Load operands  As much as O(100) cycles  Depends on locaDon 

Compute  O(1) cycles  Accesses registers 

Store result  As much as O(100) cycles  Depends on locaDon 

15 
L4: Hardware Overview CS6963 

Thread-Level Parallelism
•  Motivation:

–  a single thread leaves a processor under-utilized
for most of the time

–  by doubling processor area, single thread
performance barely improves

•  Strategies for thread-level parallelism:
–  multiple threads share the same large processor

reduces under-utilization, efficient resource
allocation

 Multi-Threading
–  each thread executes on its own mini processor

simple design, low interference between threads
Multi-Processing

Slide source: Al Davis  16 
L4: Hardware Overview 

1/26/09

5

What Resources are Shared?

•  Multiple threads are
simultaneously active (in other
words, a new thread can start
without a context switch)

•  For correctness, each thread
needs its own program counter
(PC), and its own logical regs (on
this hardware, each gets its own
physical regs)

•  Functional units, instruction unit,
i-cache shared by all threads

• 

Warp 
(InstrucDon 
Stream) 

In
st
ru
cD
on

s 
Is
su
ed

 

CS6963 
17 

L4: Hardware Overview 

Aside: Multithreading

•  Historically, supercomputers targeting non-
numeric computation
•  HEP, Tera MTA

•  Now common in commodity microprocessors
– Simultaneous multithreading:

•  Multiple threads may come from different
streams, can issue from multiple streams in
single issue slot

•  Alpha 21464 and Pentium 4 are examples
•  CUDA somewhat simplified:

–  A full warp scheduled at a time
18 

L4: Hardware Overview CS6963 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Thread Scheduling/Execution

•  Each Thread Blocks is divided in 32-
thread Warps
–  This is an implementation decision, not

part of the CUDA programming model
•  Warps are scheduling units in SM
•  If 3 blocks are assigned to an SM and each

Block has 256 threads, how many Warps
are there in an SM?
–  Each Block is divided into 256/32 = 8

Warps
–  There are 8 * 3 = 24 Warps
–  At any point in time, only one of the 24

Warps will be selected for instruction
fetch and execution.

… 
t0 t1 t2 … t31

… 

… 
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

19 
L4: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

SM Warp Scheduling
•  SM hardware implements zero-

overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized scheduling
policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all threads
in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimal of 13 Warps are needed to

fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

20 
L4: Hardware Overview 

1/26/09

6

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

SM Instruction Buffer – Warp
Scheduling

•  Fetch one warp instruction/cycle
–  from instruction L1 cache
–  into any instruction buffer slot

•  Issue one “ready-to-go” warp
instruction/cycle
–  from any warp - instruction buffer slot
–  operand scoreboarding used to prevent

hazards
•  Issue selection based on round-robin/

age of warp
•  SM broadcasts the same instruction to

32 Threads of a Warp

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

21 
L4: Hardware Overview 

Scoreboarding

•  How to determine if a thread is ready to
execute?

•  A scoreboard is a table in hardware that
tracks
–  instructions being fetched, issued, executed
–  resources (functional units and operands) they

need
– which instructions modify which registers

•  Old concept from CDC 6600 (1960s) to
separate memory and computation

22 
L4: Hardware Overview CS6963 

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  CompuDng 

Warp 3  95  CompuDng 

Warp 8  11  Operands 
ready to go 

… 

Schedule
at time k

23 
L4: Hardware Overview CS6963 

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  CompuDng 

Warp 8  11  CompuDng 

… 

Schedule
at time k+1

24 
L4: Hardware Overview CS6963 

1/26/09

7

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Scoreboarding
•  All register operands of all instructions in the

Instruction Buffer are scoreboarded
–  Status becomes ready after the needed values are

deposited
–  prevents hazards
–  cleared instructions are eligible for issue

•  Decoupled Memory/Processor pipelines
–  any thread can continue to issue instructions until

scoreboarding prevents issue
–  allows Memory/Processor ops to proceed in shadow of

Memory/Processor ops

25 
L4: Hardware Overview 

III. How it Comes Together
•  Each block mapped to different SM
•  If #blocks in a grid exceeds number

of SMs,
–  multiple blocks mapped to an SM
–  treated independently
–  provides more warps to scheduler so good

as long as resources not exceeded
•  Within a block, threads observe SIMD

model, and synchronize using
__syncthreads()

•  Across blocks, interaction through
global memory

26 
L4: Hardware Overview CS6963 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Streaming Multiprocessor (SM)

•  Streaming Multiprocessor (SM)
–  8 Streaming Processors (SP)
–  2 Super Function Units (SFU)

•  Multi-threaded instruction dispatch
–  1 to 512 threads active
–  Shared instruction fetch per 32 threads
–  Cover latency of texture/memory loads

•  20+ GFLOPS
•  16 KB shared memory
•  DRAM texture and memory access

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

27 
L4: Hardware Overview 

Summary of Lecture

•  SIMD execution model within a warp,
and conceptually within a block

•  MIMD execution model across blocks
•  Multithreading of SMs used to hide

memory latency
•  Motivation for lots of threads to be concurrently

active

•  Scoreboarding used to track warps
ready to execute

28 
L4: Hardware Overview CS6963 

1/26/09

8

What’s Coming

•  Next time:
– Correctness of parallelization (deferred

from today)
•  Next week:

– Managing the shared memories
•  February 18:

– Presentation on MPM by Jim Guilkey

29 
L4: Hardware Overview CS6963 

