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CS6963 

L4: Hardware Execution Model and 
Overview 

January 26, 2009 

Administrative 

•  First assignment out, due Friday at 5PM 
– Any questions? 

•  New mailing list: 
– cs6963-discussion@list.eng.utah.edu 
– Please use for all questions suitable for the 

whole class 
– Feel free to answer your classmates 

questions! 
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Outline 

•  Single Instruction Multiple Data (SIMD) 
•  Multithreading 
•  Scheduling instructions for SIMD, 

multithreaded multiprocessor 
•  How it comes together 
•  Reading:  
   Ch 2.3 in Grama et al. 
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Recall Execution Model 

I. SIMD Execution of  
warpsize=M threads (from 
single block) 
–  Result is a set of instruction 

streams roughly equal to # 
blocks in thread divided by 
warpsize 

II. Multithreaded Execution 
across different instruction 
streams within block 
–  Also possibly across different 

blocks if there are more blocks 
than SMs 

III. Each block mapped to 
single SM 
–  No direct interaction across 

SMs  
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Predominant Control Mechanisms:  
Some definitions 

Name Meaning Examples 

Single Instruction, 
Multiple Data 
(SIMD) 

A single thread of 
control, same 
computation applied 
across “vector” elts 

Array notation as in 
Fortran 95: 
A[1:n] = A[1:n] + B[1:n] 
Kernel fns w/in block: 
compute<<<gs,bs,msize>>> 

Multiple Instruction, 
Multiple Data 
(MIMD) 

Multiple threads of 
control, processors 
periodically synch  

OpenMP parallel loop: 
forall (i=0; i<n; i++) 
Kernel fns across blocks 
compute<<<gs,bs,msize>>> 

Single Program, 
Multiple Data 
(SPMD) 

Multiple threads of 
control, but each 
processor executes 
same code 

Processor-specific code: 
if ($threadIdx == 0) { 
} 

Slide source: Ananth Grama 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SIMD vs. MIMD Processors 

I. SIMD 

•  Motivation: 
– Data-parallel computations map well to 

architectures that apply the same 
computation repeatedly to different data 

– Conserve control units and simplify 
coordination 

•  Analogy to light switch  

7 
L4: Hardware Overview 

Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 
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Memory 

Reg 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threadIdx 

Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 
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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucDon 

Unit P!  PM‐1 
... 

Memory 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 Reg Reg 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int 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*/ 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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucDon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* i*BLOCKSIZE   
    + threadIdx    */ 
LDC BLOCKSIZE,R2 
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performs  same 
operaDons 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own 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Etc. 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Overview of SIMD Programming 
•  Vector architectures 
•  Early examples of SIMD supercomputers 
•  TODAY Mostly 

–  Multimedia extensions such as SSE-3 
–  Graphics and games processors (example, IBM Cell) 
–  Accelerators (e.g., ClearSpeed) 

•  Is there a dominant SIMD programming model? 
–  Unfortunately, NO!!! 

•  Why not? 
–  Vector architectures were programmed by scientists 
–  Multimedia extension architectures are programmed 

by systems programmers (almost assembly language!) 
or code is automatically generated by a compiler 

–  GPUs are programmed by games developers (domain-
specific) 

–  Accelerators typically use their own proprietary tools 
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Slide source: Jaewook Shin 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Aside: Multimedia Extensions like SSE-3 
•  COMPLETELY DIFFERENT ARCHITECTURE! 
•  At the core of multimedia extensions 

–  SIMD parallelism 
–  Variable-sized data fields:  

 Vector length = register width / type size 
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Example: PowerPC AltiVec 

WIDE UNIT 

Slide source: Jaewook Shin 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Aside: Multimedia Extensions 
Scalar vs. SIMD Operation 

Scalar: add r1,r2,r3 

1 

2 
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r3 
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r1 

SIMD: vadd<sws> v1,v2,v3 2 3 4 1 

2 3 4 1 
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4 6 8 2 
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v2 
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lanes 

II. Multithreading: Motivation 

•  Each arithmetic instruction includes the 
following sequence 

•  Memory latency, the time in cycles to 
access memory, limits utilization of 
compute engines 

Ac*vity  Cost  Note 

Load operands  As much as O(100) cycles  Depends on locaDon 

Compute  O(1) cycles  Accesses registers 

Store result  As much as O(100) cycles  Depends on locaDon 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Thread-Level Parallelism  
•  Motivation:  

–  a single thread leaves a processor under-utilized 
for most of the time  

–  by doubling processor area, single thread 
performance barely improves 

•  Strategies for thread-level parallelism:  
–  multiple threads share the same large processor 

reduces under-utilization, efficient resource 
allocation  

   Multi-Threading  
–  each thread executes on its own mini processor 

simple design, low interference between threads 
Multi-Processing  

Slide source: Al Davis  16 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What Resources are Shared?  

•  Multiple threads are 
simultaneously active (in other 
words, a new thread can start 
without a context switch)  

•  For correctness, each thread 
needs its own program counter 
(PC), and its own logical regs (on 
this hardware, each gets its own 
physical regs) 

•  Functional units, instruction unit, 
i-cache shared by all threads 

• 

Warp 
(InstrucDon 
Stream) 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st
ru
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on

s 
Is
su
ed
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Aside: Multithreading 

•  Historically, supercomputers targeting non-
numeric computation 
•  HEP, Tera MTA 

•  Now common in commodity microprocessors 
– Simultaneous multithreading:  

•  Multiple threads may come from different 
streams, can issue from multiple streams in 
single issue slot 

•  Alpha 21464 and Pentium 4 are examples 
•  CUDA somewhat simplified: 

–  A full warp scheduled at a time 
18 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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Thread Scheduling/Execution 

•  Each Thread Blocks is divided in 32-
thread Warps 
–  This is an implementation decision, not 

part of the CUDA programming model 
•  Warps are scheduling units in SM 
•  If 3 blocks are assigned to an SM and each 

Block has 256 threads, how many Warps 
are there in an SM? 
–  Each Block is divided into 256/32 = 8 

Warps 
–  There are 8 * 3 = 24 Warps  
–  At any point in time, only one of the 24 

Warps will be selected for instruction 
fetch and execution. 

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 
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© 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SM Warp Scheduling 
•  SM hardware implements zero-

overhead Warp scheduling 
–  Warps whose next instruction has 

its operands ready for consumption 
are eligible for execution 

–  Eligible Warps are selected for 
execution on a prioritized scheduling 
policy 

–  All threads in a Warp execute the 
same instruction when selected 

•  4 clock cycles needed to dispatch 
the same instruction for all threads 
in a Warp in G80 
–  If one global memory access is 

needed for every 4 instructions 
–  A minimal of 13 Warps are needed to 

fully tolerate 200-cycle memory 
latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 
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SM Instruction Buffer – Warp 
Scheduling 

•  Fetch one warp instruction/cycle 
–  from instruction L1 cache  
–  into any instruction buffer slot 

•  Issue one “ready-to-go” warp 
instruction/cycle 
–  from any warp - instruction buffer slot 
–  operand scoreboarding used to prevent 

hazards 
•  Issue selection based on round-robin/

age of warp 
•  SM broadcasts the same instruction to 

32 Threads of a Warp 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 
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Scoreboarding 

•  How to determine if a thread is ready to 
execute? 

•  A scoreboard is a table in hardware that 
tracks 
–  instructions being fetched, issued, executed  
–  resources (functional units and operands) they 

need 
– which instructions modify which registers 

•  Old concept from CDC 6600 (1960s) to 
separate memory and computation 
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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  CompuDng 

Warp 3  95  CompuDng 

Warp 8  11  Operands 
ready to go 

… 

Schedule 
at time k 
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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  CompuDng 

Warp 8  11  CompuDng 

… 

Schedule 
at time k+1 
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Scoreboarding 
•  All register operands of all instructions in the 

Instruction Buffer are scoreboarded 
–  Status becomes ready after the needed values are 

deposited 
–  prevents hazards 
–  cleared instructions are eligible for issue 

•  Decoupled Memory/Processor pipelines 
–  any thread can continue to issue instructions until 

scoreboarding prevents issue 
–  allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops 
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III. How it Comes Together 
•  Each block mapped to different SM 
•  If #blocks in a grid exceeds number 

of SMs,  
–  multiple blocks mapped to an SM 
–  treated independently 
–  provides more warps to scheduler so good 

as long as resources not exceeded 
•  Within a block, threads observe SIMD 

model, and synchronize using 
__syncthreads() 

•  Across blocks, interaction through 
global memory 
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Streaming Multiprocessor (SM) 

•  Streaming Multiprocessor (SM) 
–  8 Streaming Processors (SP) 
–  2 Super Function Units (SFU) 

•  Multi-threaded instruction dispatch 
–  1 to 512 threads active 
–  Shared instruction fetch per 32 threads 
–  Cover latency of texture/memory loads 

•  20+ GFLOPS 
•  16 KB shared memory 
•  DRAM texture and memory access 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 
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Summary of Lecture 

•  SIMD execution model within a warp, 
and conceptually within a block 

•  MIMD execution model across blocks 
•  Multithreading of SMs used to hide 

memory latency 
•  Motivation for lots of threads to be concurrently 

active 

•  Scoreboarding used to track warps 
ready to execute 
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What’s Coming 

•  Next time:  
– Correctness of parallelization (deferred 

from today) 
•  Next week: 

– Managing the shared memories 
•  February 18:  

– Presentation on MPM by Jim Guilkey 
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