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Outline

• More on CUDA

• First assignment, due Jan. 30 (later in lecture)

• Error checking mechanisms

• Synchronization

• More on data partitioning 

• Reading: GPU Gems 2, Ch. 31; CUDA 2.0 
Manual, particularly Chapters 4 and 5

This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

and Austin Robison (NVIDIA)
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Today’s Lecture
• Establish background to write your first CUDA code
• Testing for correctness (a little)
• Debugging (a little)
• Core concepts to be reinforced

- Data partitioning
- Synchronization
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Questions from Last Time
• Considering the GPU gets a single copy of the array, 

can two threads access the shared array at the same 
time? 

- Yes, if no bank conflicts.  But watch out!  

• Can we have different thread functions for different 
subsets of data?

- Not efficiently. 

• Why do I get the same results every time using a 
random number generator?

- Deterministic if starts with the default (or same) seed.
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My Approach to Working with New Systems

• Approach with caution
- May not behave as expected.
- Learn about behavior 

through observation and 
measurement.

- Realize that documentation 
is not always clear or 
accurate.

• Crawl, then walk, then run
- Start with something known 

to work.
- Only change one “variable” at 

a time.
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Debugging Using Device Emulation Mode
• An executable compiled in device emulation mode

(nvcc -deviceemu) runs completely on the host using 
the CUDA runtime
- No need of any device and CUDA driver
- Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
- Use host native debug support (breakpoints, inspection, etc.)
- Access any device-specific data from host code and vice-

versa
- Call any host function from device code (e.g. printf) and 

vice-versa
- Detect deadlock situations caused by improper usage of 

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, so 

simultaneous accesses of the same memory location by 
multiple threads could produce different results.

• Dereferencing device pointers on the host or host 
pointers on the device can produce correct results in 
device emulation mode, but will generate an error in 
device execution mode

• Results of floating-point computations will slightly 
differ because of:
- Different compiler outputs, instruction sets
- Use of extended precision for intermediate results

- There are various options to force strict single precision on the 
host

Run-time functions & macros for error checking
In CUDA run-time services,

cudaGetDeviceProperties(deviceProp &dp, d);
check number, type and whether device present

In libcutil.a of Software Developers’ Kit,
cutComparef (float *ref, float *data, unsigned len);

compare output with reference from CPU 
implementation   

In cutil.h of Software Developers’ Kit (with #define 
_DEBUG or –D_DEBUG compile flag), 

CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
check for error in run-time call and exit if error detected 

CUT_SAFE_MALLOC(cudaMalloc(<args>));
similar to above, but for malloc calls

CUT_CHECK_ERROR(“error message goes here”);
check for error immediately following kernel execution and 
if detected, exit with error message8
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Simple working code example from last time
• Goal for this example:

- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture

• What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “6” appear?
- Array of 16 elements, each thread examines 4 elements, 1 

block in grid, 1 grid
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3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data 
distribution

CS6963

Reductions (from last time)

• This type of computation is called a parallel reduction
- Operation is applied to large data structure
- Computed result represents the aggregate solution across the large 

data structure
- Large data structure computed result (perhaps single number) 
[dimensionality reduced]

• Why might parallel reductions be well-suited to GPUs?
• What if we tried to compute the final sum on the GPUs? 

(next class and assignment)                                     
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Reminder: Gathering and Reporting Results
• Global, device functions and excerpts from host, main
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int __host__ void outer_compute 
(int *h_in_array, int *h_out_array) {
…
compute<<<1,BLOCKSIZE,msize)>>> 

(d_in_array, d_out_array);

cudaMemcpy(h_out_array, 
d_out_array, 
BLOCKSIZE*sizeof(int), 
cudaMemcpyDeviceToHost);

}

main(int argc, char **argv) {
…
for (int i=0; i<BLOCKSIZE; i++) 
{  sum+=out_array[i]; }
printf (”Result = %d\n",sum);

}

__device__ int compare(int a, int b) {
if (a == b) return 1;
return 0;

}

__global__ void compute(int *d_in, int 
*d_out) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {   

int val = d_in[i*BLOCKSIZE +    
threadIdx.x];  

d_out[threadIdx.x] += 
compare(val, 6);

}
}

Compute individual 
results for each thread

Serialize final resutls 
gathering on host
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Gathering Results on GPU: Synchronization

void __syncthreads();

• Functionality: Synchronizes all threads in a block
- Each thread waits at the point of this call until all other 

threads have reached it
- Once all threads have reached this point, execution 

resumes normally

• Why is this needed?
- A thread can freely read the shared memory of its 

thread block or the global memory of either its block or 
grid.

- Allows the program to guarantee partial ordering of these 
accesses to prevent incorrect orderings.  

• Watch out!  
- Potential for deadlock when it appears in conditionals

CS6963



Gathering Results on GPU for “Count 6”

13
L3: Synchronization, Data & Memory

__global__ void compute(int *d_in, int
*d_out) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {   

int val = d_in[i*BLOCKSIZE +    
threadIdx.x];  

d_out[threadIdx.x] += 
compare(val, 6);

}
}
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__global__ void compute(int *d_in, int
*d_out, int *d_sum) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {   

int val = d_in[i*BLOCKSIZE +    
threadIdx.x];  

d_out[threadIdx.x] += 
compare(val, 6);

}
__synthreads();
if (threadIdx.x == 0) {

for 0..BKSIZE-1
*d_sum += d_out[i];        

}
}

Also Atomic Update to Sum Variable
int atomicAdd(int* address, int val); 

Increments the integer at address by val.

Atomic means that once initiated, the operation 
executes to completion without interruption by other 
threads

Example: 
atomicAdd(d_sum, d_out_array[threadIdx.x]);  
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Programming Assignment #1
Problem 1:
In the “count 6” example using synchronization, we accumulated all 

results into out_array[0], thus serializing the accumulation computation 
on the GPU.  Suppose we want to exploit some parallelism in this part, 
which will likely be particularly important to performance as we scale 
the number of threads.  A common idiom for reduction computations is 
to use a tree-structured results-gathering phase,  where independent 
threads collect their results in parallel.  The tree below illustrates this 
for our example, with SIZE=16 and BLOCKSIZE=4.

Your job is to write this version of the reduction in CUDA.  You can start 
with the sample code, but adjust the problem size to be larger:

#define SIZE 256
#define BLOCKSIZE 32   
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out[0] += out[2]

out[0] += out[1] out[2] += out[3]

out[0] out[1] out[2] out[3]
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Another Example: Adding Two Matrices

CPU C program 
void add_matrix_cpu(float *a, float *b, 

float *c, int N)
{ 
int i, j, index; 
for (i=0;i<N;i++) { 

for (j=0;j<N;j++) {
index =i+j*N; 
c[index]=a[index]+b[index];

} 
} 

} 

void main() { 
..... 
add_matrix(a,b,c,N); 

} 
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CUDA C program
__global__ void add_matrix_gpu(float *a, 
float *b, float *c, int N)
{ 

int i =blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N; 
if( i <N && j <N) 

c[index]=a[index]+b[index]; 
} 

void main() { 
dim3 dimBlock(blocksize,blocksize); 
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b,c
,N); 
}

Example source: Austin Robison, NVIDIA



Closer Inspection of Computation and Data 
Partitioning

• Define 2-d set of blocks, and 2-d set of threads 
per block

• Each thread identifies what single element of the 
matrix it operates on

• Let blocksize = 2 and N = 4
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dim3 dimBlock(blocksize,blocksize); 
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

int i=blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N; 
if( i <N && j <N) 

c[index]=a[index]+b[index]; 
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Closer Inspection of Computation and Data 
Partitioning

• Define 2-d set of blocks, and 2-d set of 
threads per block

• Each thread identifies what single 
element of the matrix it operates on

• Let blocksize = 2 and N = 4
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dim3 dimBlock(blocksize,blocksize); 
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

int i=blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N; 
if( i <N && j <N) 

c[index]=a[index]+b[index]; 
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Data Distribution to Threads
• Many data parallel programming languages have 

mechanisms for expressing how a distributed data 
structure is mapped to threads  

- That is, the portion of the data a thread accesses (and 
usually stores locally)

- Examples: HPF, Chapel, UPC  

• Reasons for selecting a particular distribution
- Sharing patterns: group together according to “data reuse”

and communication needs
- Affinity with other data 
- Locality: transfer size and capacity limit on shared memory
- Access patterns relative to computation (avoid bank 

conflicts)
- Minimizing overhead: Cost of copying to host and between 

global and shared memory
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Concept of Data Distributions in CUDA
• This concept is not completely natural for CUDA

- Implicit from computation partitioning and access 
expressions within threads

- Within a block of threads, most memory is shared, so not 
really distributed

• Nevertheless, I think it is still useful
- Spatial understanding of computation and data organization 

(helps conceptualize)
- Distribution of data needed for objects too large to fit in 

shared memory (i.e., partitioning across blocks in a grid)
- Helpful in putting CUDA in context of other languages
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Common Data Distributions
• Consider a 1-Dimensional array
CYCLIC:        

for (i = 0; i<BLOCKSIZE; i++)
… d_in [i*BLOCKSIZE + threadIdx.x];

BLOCK: 
for (i=threadIdx.x*BLOCKSIZE; i<(threadIdx.x+1)   

*BLOCKSIZE; i++) 
… d_in[i];

BLOCK-CYCLIC:
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3 6 57 3 5 26 0 9 639 1 72

3 6 57 3 5 26 0 9 639 1 72
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Programming Assignment #1, cont.
Problem 2: Computation Partitioning & Data Distribution
Using the matrix addition example from Lecture 2 class notes, 

develop a complete CUDA program for integer matrix addition.  
Initialize the two input matrices using random integers from 0 to 9 
(as in the “count 6” example).  Initialize the ith entry in both a[i] 
and b[i], so that everyone’s matrix is initialized the same way.

Your CUDA code should use a data distribution for the input and 
output matrices that exploits several features of the architecture 
to improve performance (although the advantages of these will be
greater on objects allocated to shared memory and with reuse of 
data within a block).  

• a grid of 16 square blocks of threads (>= # multiproc)
• each block executing 64 threads (> warpsize)
• each thread accessing 32 elements (better if larger)
Within a grid block, you should use a BLOCK data distribution for 

the columns, so that each thread operates on a column.  This 
should help reduce memory bank conflicts.

Return the output array.  
22
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Hardware Implementation: Memory 
Architecture

• The local, global, constant, and 
texture spaces are regions of 
device memory

• Each multiprocessor has:
- A set of 32-bit registers per 

processor
- On-chip shared memory

- Where the shared memory 
space resides

- A read-only constant cache
- To speed up access to the 

constant memory space
- A read-only texture cache

- To speed up access to the 
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Global, constant, texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Programming Model: Memory Spaces
• Each thread can:

- Read/write per-thread registers
- Read/write per-thread local 

memory
- Read/write per-block shared 

memory
- Read/write per-grid global 

memory
- Read only per-grid constant 

memory
- Read only per-grid texture 

memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The host can read/write 
global, constant, and 
texture memory
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Threads, Warps, Blocks
• There are (up to) 32 threads in a Warp

- Only <32 when there are fewer than 32 total threads

• There are (up to) 16 Warps in a Block
• Each Block (and thus, each Warp) executes on a 

single SM
• G80 has 16 SMs
• At least 16 Blocks required to “fill” the device
• More is better

- If resources (registers, thread space, shared memory) 
allow, more than 1 Block can occupy each SM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Hardware Implementation: A Set of SIMD 
Multiprocessors
• A device has a set of  

multiprocessors
• Each multiprocessor is a 

set of 32-bit processors 
with a Single Instruction 
Multiple Data architecture
- Shared instruction unit

• At each clock cycle, a 
multiprocessor executes 
the same instruction on a 
group of threads called a 
warp

• The number of threads in a 
warp is the warp size

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 1
…

Processor 2 Processor M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Hardware Implementation: Execution Model 
• Each thread block of a grid is split into warps, each gets 

executed by one multiprocessor (SM)
- The device processes only one grid at a time

• Each thread block is executed by one multiprocessor
- So that the shared memory space resides in the on-chip shared 

memory

• A multiprocessor can execute multiple blocks 
concurrently
- Shared memory and registers are partitioned among the 

threads of all concurrent blocks
- So, decreasing shared memory usage (per block) and register 

usage (per thread) increases number of blocks that can run 
concurrently

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Terminology Review

• device = GPU = set of multiprocessors 
• Multiprocessor = set of processors & shared memory
• Kernel = GPU program
• Grid = array of thread blocks that execute a kernel
• Thread block = group of SIMD threads that execute 

a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Access Times
• Register – dedicated HW - single cycle
• Shared Memory – dedicated HW - single cycle
• Local Memory – DRAM, no cache - *slow*
• Global Memory – DRAM, no cache - *slow*
• Constant Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality
• Texture Memory – DRAM, cached, 1…10s…100s of 

cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Language Extensions: Variable Type Qualifiers

• __device__ is optional when used with __local__,  
__shared__, or  __constant__

• Automatic variables without any qualifier reside in a 
register
- Except arrays that reside in local memory

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
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Variable Type Restrictions
• Pointers can only point to memory allocated or 

declared in global memory:
- Allocated in the host and passed to the kernel: 
__global__ void KernelFunc(float* ptr)

- Obtained as the address of a global variable: float* ptr 
= &GlobalVar;

Relating this Back to the “Count 6” Example
• A few variables (i, val) are going in device registers
• We are copying input array into device and output 

array back to host
- These device copies of the data all reside in global memory

• Suppose we want to access only shared memory on 
the devices

- Cannot copy into shared memory from host!
- Requires another copy from/to global memory to/from 

shared memory

• Other options
- Use constant memory for input array (not helpful for 

current implementation, but possibly useful)
- Use shared memory for output array and just return single 

result (today’s version with synchronization)
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Summary of Lecture
• Some error checking techniques to determine if program 

is correct
• Synchronization constructs
• Discussion of Data Partitioning
• First assignment, due FRIDAY, JANUARY 30, 5PM

CS6963
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Next Week
• Reasoning about parallelization

- When is it safe?

CS6963


