
CS6963

L3: Data
Partitioning and

Memory
Organization,

Synchronization
January 21, 2009

1
L3: Synchronization, Data & Memory

2
L3: Synchronization, Data & Memory

Outline

• More on CUDA

• First assignment, due Jan. 30 (later in lecture)

• Error checking mechanisms

• Synchronization

• More on data partitioning

• Reading: GPU Gems 2, Ch. 31; CUDA 2.0
Manual, particularly Chapters 4 and 5

This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

and Austin Robison (NVIDIA)
CS6963

Today’s Lecture
• Establish background to write your first CUDA code
• Testing for correctness (a little)
• Debugging (a little)
• Core concepts to be reinforced

- Data partitioning
- Synchronization

3
L3: Synchronization, Data & MemoryCS6963

Questions from Last Time
• Considering the GPU gets a single copy of the array,

can two threads access the shared array at the same
time?

- Yes, if no bank conflicts. But watch out!

• Can we have different thread functions for different
subsets of data?

- Not efficiently.

• Why do I get the same results every time using a
random number generator?

- Deterministic if starts with the default (or same) seed.

4
L3: Synchronization, Data & MemoryCS6963

My Approach to Working with New Systems

• Approach with caution
- May not behave as expected.
- Learn about behavior

through observation and
measurement.

- Realize that documentation
is not always clear or
accurate.

• Crawl, then walk, then run
- Start with something known

to work.
- Only change one “variable” at

a time.

5
L3: Synchronization, Data & MemoryCS6963 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Urbana-Champaign
6

L3: Synchronization, Data & Memory

Debugging Using Device Emulation Mode
• An executable compiled in device emulation mode

(nvcc -deviceemu) runs completely on the host using
the CUDA runtime
- No need of any device and CUDA driver
- Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
- Use host native debug support (breakpoints, inspection, etc.)
- Access any device-specific data from host code and vice-

versa
- Call any host function from device code (e.g. printf) and

vice-versa
- Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

7
L3: Synchronization, Data & Memory

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location by
multiple threads could produce different results.

• Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

• Results of floating-point computations will slightly
differ because of:
- Different compiler outputs, instruction sets
- Use of extended precision for intermediate results

- There are various options to force strict single precision on the
host

Run-time functions & macros for error checking
In CUDA run-time services,

cudaGetDeviceProperties(deviceProp &dp, d);
check number, type and whether device present

In libcutil.a of Software Developers’ Kit,
cutComparef (float *ref, float *data, unsigned len);

compare output with reference from CPU
implementation

In cutil.h of Software Developers’ Kit (with #define
_DEBUG or –D_DEBUG compile flag),

CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>))
check for error in run-time call and exit if error detected

CUT_SAFE_MALLOC(cudaMalloc(<args>));
similar to above, but for malloc calls

CUT_CHECK_ERROR(“error message goes here”);
check for error immediately following kernel execution and
if detected, exit with error message8

L3: Synchronization, Data & MemoryCS6963

Simple working code example from last time
• Goal for this example:

- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture

• What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “6” appear?
- Array of 16 elements, each thread examines 4 elements, 1

block in grid, 1 grid

9
L3: Synchronization, Data & Memory

3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data
distribution

CS6963

Reductions (from last time)

• This type of computation is called a parallel reduction
- Operation is applied to large data structure
- Computed result represents the aggregate solution across the large

data structure
- Large data structure computed result (perhaps single number)
[dimensionality reduced]

• Why might parallel reductions be well-suited to GPUs?
• What if we tried to compute the final sum on the GPUs?

(next class and assignment)

10
L3: Synchronization, Data & MemoryCS6963

Reminder: Gathering and Reporting Results
• Global, device functions and excerpts from host, main

11
L3: Synchronization, Data & MemoryCS6963

int __host__ void outer_compute
(int *h_in_array, int *h_out_array) {
…
compute<<<1,BLOCKSIZE,msize)>>>

(d_in_array, d_out_array);

cudaMemcpy(h_out_array,
d_out_array,
BLOCKSIZE*sizeof(int),
cudaMemcpyDeviceToHost);

}

main(int argc, char **argv) {
…
for (int i=0; i<BLOCKSIZE; i++)
{ sum+=out_array[i]; }
printf (”Result = %d\n",sum);

}

__device__ int compare(int a, int b) {
if (a == b) return 1;
return 0;

}

__global__ void compute(int *d_in, int
*d_out) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] +=
compare(val, 6);

}
}

Compute individual
results for each thread

Serialize final resutls
gathering on host

12
L3: Synchronization, Data & Memory

Gathering Results on GPU: Synchronization

void __syncthreads();

• Functionality: Synchronizes all threads in a block
- Each thread waits at the point of this call until all other

threads have reached it
- Once all threads have reached this point, execution

resumes normally

• Why is this needed?
- A thread can freely read the shared memory of its

thread block or the global memory of either its block or
grid.

- Allows the program to guarantee partial ordering of these
accesses to prevent incorrect orderings.

• Watch out!
- Potential for deadlock when it appears in conditionals

CS6963

Gathering Results on GPU for “Count 6”

13
L3: Synchronization, Data & Memory

__global__ void compute(int *d_in, int
*d_out) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] +=
compare(val, 6);

}
}

CS6963

__global__ void compute(int *d_in, int
*d_out, int *d_sum) {

d_out[threadIdx.x] = 0;

for (i=0; i<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] +=
compare(val, 6);

}
__synthreads();
if (threadIdx.x == 0) {

for 0..BKSIZE-1
*d_sum += d_out[i];

}
}

Also Atomic Update to Sum Variable
int atomicAdd(int* address, int val);

Increments the integer at address by val.

Atomic means that once initiated, the operation
executes to completion without interruption by other
threads

Example:
atomicAdd(d_sum, d_out_array[threadIdx.x]);

14
L3: Synchronization, Data & MemoryCS6963

Programming Assignment #1
Problem 1:
In the “count 6” example using synchronization, we accumulated all

results into out_array[0], thus serializing the accumulation computation
on the GPU. Suppose we want to exploit some parallelism in this part,
which will likely be particularly important to performance as we scale
the number of threads. A common idiom for reduction computations is
to use a tree-structured results-gathering phase, where independent
threads collect their results in parallel. The tree below illustrates this
for our example, with SIZE=16 and BLOCKSIZE=4.

Your job is to write this version of the reduction in CUDA. You can start
with the sample code, but adjust the problem size to be larger:

#define SIZE 256
#define BLOCKSIZE 32

15
L3: Synchronization, Data & Memory

out[0] += out[2]

out[0] += out[1] out[2] += out[3]

out[0] out[1] out[2] out[3]

CS6963

Another Example: Adding Two Matrices

CPU C program
void add_matrix_cpu(float *a, float *b,

float *c, int N)
{
int i, j, index;
for (i=0;i<N;i++) {

for (j=0;j<N;j++) {
index =i+j*N;
c[index]=a[index]+b[index];

}
}

}

void main() {
.....
add_matrix(a,b,c,N);

}

16
L3: Synchronization, Data & Memory

CUDA C program
__global__ void add_matrix_gpu(float *a,
float *b, float *c, int N)
{

int i =blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N;
if(i <N && j <N)

c[index]=a[index]+b[index];
}

void main() {
dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b,c
,N);
}

Example source: Austin Robison, NVIDIA

Closer Inspection of Computation and Data
Partitioning

• Define 2-d set of blocks, and 2-d set of threads
per block

• Each thread identifies what single element of the
matrix it operates on

• Let blocksize = 2 and N = 4

17
L3: Synchronization, Data & Memory

dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

int i=blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N;
if(i <N && j <N)

c[index]=a[index]+b[index];

CS6963

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Closer Inspection of Computation and Data
Partitioning

• Define 2-d set of blocks, and 2-d set of
threads per block

• Each thread identifies what single
element of the matrix it operates on

• Let blocksize = 2 and N = 4

18
L3: Synchronization, Data & Memory

dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

int i=blockIdx.x*blockDim.x+threadIdx.x;
int j=blockIdx.y*blockDim.y+threadIdx.y;
int index =i+j*N;
if(i <N && j <N)

c[index]=a[index]+b[index];

CS6963

1,0 1,1 1,11,0

0,0 0,1 0,10,0

1,0 1,1 1,11,0

0,0 0,1 0,10,0
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
BLOCK

(1,1)
BLOCK

(1,0)

BLOCK
(0,0)

BLOCK
(0,1)

Data Distribution to Threads
• Many data parallel programming languages have

mechanisms for expressing how a distributed data
structure is mapped to threads

- That is, the portion of the data a thread accesses (and
usually stores locally)

- Examples: HPF, Chapel, UPC

• Reasons for selecting a particular distribution
- Sharing patterns: group together according to “data reuse”

and communication needs
- Affinity with other data
- Locality: transfer size and capacity limit on shared memory
- Access patterns relative to computation (avoid bank

conflicts)
- Minimizing overhead: Cost of copying to host and between

global and shared memory

19
L3: Synchronization, Data & MemoryCS6963

Concept of Data Distributions in CUDA
• This concept is not completely natural for CUDA

- Implicit from computation partitioning and access
expressions within threads

- Within a block of threads, most memory is shared, so not
really distributed

• Nevertheless, I think it is still useful
- Spatial understanding of computation and data organization

(helps conceptualize)
- Distribution of data needed for objects too large to fit in

shared memory (i.e., partitioning across blocks in a grid)
- Helpful in putting CUDA in context of other languages

20
L3: Synchronization, Data & MemoryCS6963

Common Data Distributions
• Consider a 1-Dimensional array
CYCLIC:

for (i = 0; i<BLOCKSIZE; i++)
… d_in [i*BLOCKSIZE + threadIdx.x];

BLOCK:
for (i=threadIdx.x*BLOCKSIZE; i<(threadIdx.x+1)

*BLOCKSIZE; i++)
… d_in[i];

BLOCK-CYCLIC:

21
L3: Synchronization, Data & Memory

3 6 57 3 5 26 0 9 639 1 72

3 6 57 3 5 26 0 9 639 1 72

CS6963

Programming Assignment #1, cont.
Problem 2: Computation Partitioning & Data Distribution
Using the matrix addition example from Lecture 2 class notes,

develop a complete CUDA program for integer matrix addition.
Initialize the two input matrices using random integers from 0 to 9
(as in the “count 6” example). Initialize the ith entry in both a[i]
and b[i], so that everyone’s matrix is initialized the same way.

Your CUDA code should use a data distribution for the input and
output matrices that exploits several features of the architecture
to improve performance (although the advantages of these will be
greater on objects allocated to shared memory and with reuse of
data within a block).

• a grid of 16 square blocks of threads (>= # multiproc)
• each block executing 64 threads (> warpsize)
• each thread accessing 32 elements (better if larger)
Within a grid block, you should use a BLOCK data distribution for

the columns, so that each thread operates on a column. This
should help reduce memory bank conflicts.

Return the output array.
22

L3: Synchronization, Data & MemoryCS6963

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

23
L3: Synchronization, Data & Memory

Hardware Implementation: Memory
Architecture

• The local, global, constant, and
texture spaces are regions of
device memory

• Each multiprocessor has:
- A set of 32-bit registers per

processor
- On-chip shared memory

- Where the shared memory
space resides

- A read-only constant cache
- To speed up access to the

constant memory space
- A read-only texture cache

- To speed up access to the
texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Global, constant, texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

24
L3: Synchronization, Data & Memory

Programming Model: Memory Spaces
• Each thread can:

- Read/write per-thread registers
- Read/write per-thread local

memory
- Read/write per-block shared

memory
- Read/write per-grid global

memory
- Read only per-grid constant

memory
- Read only per-grid texture

memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The host can read/write
global, constant, and
texture memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

25
L3: Synchronization, Data & Memory

Threads, Warps, Blocks
• There are (up to) 32 threads in a Warp

- Only <32 when there are fewer than 32 total threads

• There are (up to) 16 Warps in a Block
• Each Block (and thus, each Warp) executes on a

single SM
• G80 has 16 SMs
• At least 16 Blocks required to “fill” the device
• More is better

- If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

26
L3: Synchronization, Data & Memory

Hardware Implementation: A Set of SIMD
Multiprocessors
• A device has a set of

multiprocessors
• Each multiprocessor is a

set of 32-bit processors
with a Single Instruction
Multiple Data architecture
- Shared instruction unit

• At each clock cycle, a
multiprocessor executes
the same instruction on a
group of threads called a
warp

• The number of threads in a
warp is the warp size

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 1
…

Processor 2 Processor M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27
L3: Synchronization, Data & Memory

Hardware Implementation: Execution Model
• Each thread block of a grid is split into warps, each gets

executed by one multiprocessor (SM)
- The device processes only one grid at a time

• Each thread block is executed by one multiprocessor
- So that the shared memory space resides in the on-chip shared

memory

• A multiprocessor can execute multiple blocks
concurrently
- Shared memory and registers are partitioned among the

threads of all concurrent blocks
- So, decreasing shared memory usage (per block) and register

usage (per thread) increases number of blocks that can run
concurrently

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

28
L3: Synchronization, Data & Memory

Terminology Review

• device = GPU = set of multiprocessors
• Multiprocessor = set of processors & shared memory
• Kernel = GPU program
• Grid = array of thread blocks that execute a kernel
• Thread block = group of SIMD threads that execute

a kernel and can communicate via shared memory

Memory Location Cached Access Who
Local Off-chip No Read/write One thread
Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

29
L3: Synchronization, Data & Memory

Access Times
• Register – dedicated HW - single cycle
• Shared Memory – dedicated HW - single cycle
• Local Memory – DRAM, no cache - *slow*
• Global Memory – DRAM, no cache - *slow*
• Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

30
L3: Synchronization, Data & Memory

Language Extensions: Variable Type Qualifiers

• __device__ is optional when used with __local__,
__shared__, or __constant__

• Automatic variables without any qualifier reside in a
register
- Except arrays that reside in local memory

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

31
L3: Synchronization, Data & Memory

Variable Type Restrictions
• Pointers can only point to memory allocated or

declared in global memory:
- Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

- Obtained as the address of a global variable: float* ptr
= &GlobalVar;

Relating this Back to the “Count 6” Example
• A few variables (i, val) are going in device registers
• We are copying input array into device and output

array back to host
- These device copies of the data all reside in global memory

• Suppose we want to access only shared memory on
the devices

- Cannot copy into shared memory from host!
- Requires another copy from/to global memory to/from

shared memory

• Other options
- Use constant memory for input array (not helpful for

current implementation, but possibly useful)
- Use shared memory for output array and just return single

result (today’s version with synchronization)

32
L3: Synchronization, Data & MemoryCS6963

33
L3: Synchronization, Data & Memory

Summary of Lecture
• Some error checking techniques to determine if program

is correct
• Synchronization constructs
• Discussion of Data Partitioning
• First assignment, due FRIDAY, JANUARY 30, 5PM

CS6963
34

L3: Synchronization, Data & Memory

Next Week
• Reasoning about parallelization

- When is it safe?

CS6963

