
CS6963 

L2: Introduction to 
CUDA


January 14, 2009


1

L2:Introduction to CUDA




2 

L2:Introduction to CUDA


Outline 

• Overview of the CUDA Programming Model for 
NVIDIA systems 

• Motivation for programming model  

• Presentation of syntax 

• Simple working example (also on website) 

• Reading: GPU Gems 2, Ch. 31;   
 CUDA 2.0 Manual, particularly Chapters 2 and 4 

This lecture includes slides provided by: 
   Wen-mei Hwu (UIUC) and David Kirk (NVIDIA) 
   see http://courses.ece.uiuc.edu/ece498/al1/ 

   and Austin Robison (NVIDIA) 

CS6963 



CUDA (Compute Unified Device Architecture)  
• Data-parallel programming interface to GPU 

- Data to be operated on is discretized into independent partition of 
memory 

-  Each thread performs roughly same computation to different 
partition of data 

- When appropriate, easy to express and very efficient parallelization  

• Programmer expresses 
- Thread programs to be launched on GPU, and how to launch 
- Data organization and movement between host and GPU 
- Synchronization, memory management, testing, … 

• CUDA is one of first to support heterogeneous 
architectures (more later in the semester) 

• CUDA environment  
-  Compiler, run-time utilities, libraries, emulation, performance 

3

L2:Introduction to CUDA
CS6963 



Today’s Lecture 
• Goal is to enable writing CUDA programs right away 

- Not efficient ones – need to explain architecture and 
mapping for that (soon) 

- Not correct ones – need to discuss how to reason about 
correctness (also soon) 

- Limited discussion of why these constructs are used or 
comparison with other programming models (more as 
semester progresses) 

- Limited discussion of how to use CUDA environment 
(more next week) 

- No discussion of how to debug.  We’ll cover that as best 
we can during the semester. 

4

 L2:Introduction to CUDA
CS6963 



What Programmer Expresses in CUDA  

•  Computation partitioning (where does computation occur?) 
- Declarations on functions __host__, __global__, __device__ 
- Mapping of thread programs to device: compute <<<gs, bs>>>(<args>) 

• Data partitioning (where does data reside, who may access it and 
how?) 

•  Declarations on data __shared__, __device__, __constant__, … 

• Data management and orchestration 
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost) 

•  Concurrency management 
-  E.g. __synchthreads() 5


L2:Introduction to CUDA


P

M 

P

H
O

S
T 

 (C
P

U
) 

M D
E

V
IC

E
 (G

P
U

) 

Interconnect between devices and memories 

CS6963 



Minimal Extensions to C + API 
•  Declspecs 

-  global, device, 
shared, local, 
constant 

•  Keywords 
-  threadIdx, blockIdx 

•  Intrinsics 
-  __syncthreads 

•  Runtime API 
-  Memory, symbol, 
execution management 

•  Function launch 

__device__ float filter[N];  

__global__ void convolve (float *image)  
{ 

  __shared__ float region[M]; 
  ...  

region[threadIdx] = image[i];  

  __syncthreads()   
  ...  

  image[j] = result; 
} 

// Allocate GPU memory 
void *myimage = cudaMalloc(bytes) 

// 100 blocks, 10 threads per block 
convolve<<<100, 10>>> (myimage); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

6 
L2: Introduction to CUDA 



CUDA Software Developer’s Kit (SDK) 

7

L2:Introduction to CUDA
Slide source: Austin Robison (NVIDIA) 



NVCC Compiler’s Role: Partition Code and 
Compile for Device    

8

L2:Introduction to CUDA


mycode.cu 

__device__ dfunc() { 
   int ddata; 
} 

__global__ gfunc() { 
   int gdata; 
} 

Main() { } 
__host__  hfunc () { 
   int hdata; 
 <<<gfunc(g,b,m)>>>(); 
} 

D
ev

ic
e 

O
nl

y 
In

te
rfa

ce
 

H
os

t O
nl

y 

int main_data; 
__shared__  int sdata;  

Main() {} 
__host__  hfunc () { 
   int hdata;       
<<<gfunc(g,b,m)>>>
(); 
} 

__global__ gfunc() { 
   int gdata; 
} 

Compiled by native 
compiler: gcc, icc, cc 

__shared__ sdata;  

__device__ dfunc() { 
   int ddata; 
} 

Compiled by nvcc 
compiler 

int main_data; 

CS6963




CS6963


CUDA Programming Model: 
A Highly Multithreaded Coprocessor 
•  The GPU is viewed as a compute device that: 

-  Is a coprocessor to the CPU or host 
-  Has its own DRAM (device memory) 
-  Runs many threads in parallel 

•  Data-parallel portions of an application are executed 
on the device as kernels which run in parallel on many 
threads 

•  Differences between GPU and CPU threads  
-  GPU threads are extremely lightweight 

-  Very little creation overhead 
-  GPU needs 1000s of threads for full efficiency 

-  Multi-core CPU needs only a few 

9 
L2: Introduction to CUDA 



Thread Batching: Grids and Blocks 
•  A kernel is executed as a grid 

of thread blocks 
-  All threads share data 

memory space 

•  A thread block is a batch of 
threads that can cooperate 
with each other by: 
-  Synchronizing their execution 

-  For hazard-free shared 
memory accesses 

-  Efficiently sharing data through 
a low latency shared memory 

•  Two threads from two 
different blocks cannot 
cooperate 

Host 

Kernel 
1 

Kernel 
2 

Device 

Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

Courtesy: NDVIA 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

10 
L2: Introduction to CUDA 



Block and Thread IDs 

•  Threads and blocks have 
IDs 
-  So each thread can decide 

what data to work on 
-  Block ID: 1D or 2D 

(blockIdx.x, blockIdx.y) 
-  Thread ID: 1D, 2D, or 3D 

(threadIdx.{x,y,z})  

•  Simplifies memory 
addressing when processing 
multidimensional data 
-  Image processing 
-  Solving PDEs on volumes 
-  … 

Device 
Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

Courtesy: NDVIA 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana-Champaign 

11 
L2: Introduction to CUDA 



Simple working code example 
• Goal for this example: 

-  Really simple but illustrative of key concepts 
-  Fits in one file with simple compile command 
-  Can absorb during lecture 

• What does it do? 
- Scan elements of array of numbers (any of 0 to 9) 
- How many times does “6” appear? 
- Array of 16 elements, each thread examines 4 elements, 1 

block in grid, 1 grid 

12 

L2:Introduction to CUDA


3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2 

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12 
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13 
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14 
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15 

} Known as a 
cyclic data  
distribution 

CS6963 



CUDA Pseudo-Code 

MAIN PROGRAM: 
Initialization 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

13

L2:Introduction to CUDA


HOST FUNCTION: 
Allocate memory on device for 
copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Copy device output to host 

GLOBAL FUNCTION: 
Thread scans subset of array elements 
Call device function to compare with “6” 
Compute local result 

DEVICE FUNCTION: 
Compare current element  

and “6” 
Return 1 if same, else 0 

CS6963 



Main Program: Preliminaries 

14

L2:Introduction to CUDA


MAIN PROGRAM: 
Initialization 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 

int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  … 
} 

CS6963 



Main Program: Invoke Global Function 

15

L2:Introduction to CUDA


MAIN PROGRAM: 
Initialization (OMIT) 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 
__host__ void outer_compute

 (int *in_arr, int *out_arr); 
int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  /* initialization */ … 
  outer_compute(in_array, out_array); 
   … 
} 

CS6963 



Main Program: Calculate Output & Print Result 

16

L2:Introduction to CUDA


MAIN PROGRAM: 
Initialization (OMIT) 
•  Allocate memory on host for 

input and output 
•  Assign random numbers to 

input array 
Call host function 
Calculate final output from 
per-thread output 
Print result 

#include <stdio.h> 
#define SIZE 16 
#define BLOCKSIZE 4 
__host__ void outer_compute

 (int *in_arr, int *out_arr); 
int main(int argc, char **argv) 
{ 
  int *in_array, *out_array; 
  int sum = 0; 
  /* initialization */ … 
  outer_compute(in_array, out_array); 
  for (int i=0; i<BLOCKSIZE; i++) { 
    sum+=out_array[i]; 
  } 
  printf (”Result = %d\n",sum); 
} 

CS6963 



Host Function: Preliminaries & Allocation 

17

L2:Introduction to CUDA


HOST FUNCTION: 
Allocate memory on device for 
copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   … 
} 

CS6963 



Host Function: Copy Data To/From Host 

18

L2:Introduction to CUDA


HOST FUNCTION: 
Allocate memory on device for 
copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   cudaMemcpy(d_in_array, h_in_array,   
 SIZE*sizeof(int), 
 cudaMemcpyHostToDevice); 

   … do computation ... 
   cudaMemcpy(h_out_array,d_out_array, 

 BLOCKSIZE*sizeof(int), 
 cudaMemcpyDeviceToHost); 

} 

CS6963 



Host Function: Setup & Call Global Function 

19

L2:Introduction to CUDA


HOST FUNCTION: 
Allocate memory on device for 
copy of input and output 
Copy input to device 
Set up grid/block 
Call global function 
Copy device output to host 

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) { 

   int *d_in_array, *d_out_array; 

   cudaMalloc((void **) &d_in_array, 
 SIZE*sizeof(int)); 

   cudaMalloc((void **) &d_out_array, 
 BLOCKSIZE*sizeof(int)); 

   cudaMemcpy(d_in_array, h_in_array,   
 SIZE*sizeof(int), 
 cudaMemcpyHostToDevice); 

   msize = (SIZE+BLOCKSIZE) * 
 sizeof (int); 

   compute<<<1,BLOCKSIZE,msize)>>> 
 (d_in_array, d_out_array); 

   cudaMemcpy(h_out_array, d_out_array, 
 BLOCKSIZE*sizeof(int), 
 cudaMemcpyDeviceToHost); 

} 
CS6963 



Global Function 

20

L2:Introduction to CUDA


GLOBAL FUNCTION: 
Thread scans subset of array 

elements 
Call device function to compare 

with “6” 
Compute local result 

__global__ void compute(int 
*d_in,int *d_out) { 

  d_out[threadIdx.x] = 0; 
  for (int i=0; i<SIZE/BLOCKSIZE; 

 i++)  
   { 
      int val = d_in[i*BLOCKSIZE + 

threadIdx.x];   
     d_out[threadIdx.x] += 

compare(val, 6); 
   } 
} 

CS6963 



Device Function 

21

L2:Introduction to CUDA


DEVICE FUNCTION: 
Compare current element  

and “6” 
Return 1 if same, else 0 

__device__ int 
compare(int a, int b) { 

  if (a == b) return 1; 
  return 0; 
} 

CS6963 



Reductions 

• This type of computation is called a parallel reduction 
- Operation is applied to large data structure 
-  Computed result represents the aggregate solution across the large 

data structure 
-  Large data structure  computed result (perhaps single number) 
[dimensionality reduced] 

• Why might parallel reductions be well-suited to GPUs? 
• What if we tried to compute the final sum on the GPUs? 

(next class and assignment)                                                  

22

L2:Introduction to CUDA
CS6963 



Standard Parallel Construct 
• Sometimes called “embarassingly parallel” or 

“pleasingly parallel” 
• Each thread is completely independent of the others 
• Final result copied to CPU 
• Another example, adding two matrices: 

- A more careful examination of decomposing computation 
into grids and thread blocks 

23

L2:Introduction to CUDA
CS6963 



Another Example: Adding Two Matrices 
CPU C program  
void add_matrix_cpu(float *a, float *b, 

float *c, int N) 
{  
int i, j, index;  
for (i=0;i<N;i++) {  
  for (j=0;j<N;j++) { 

       index =i+j*N;  
       c[index]=a[index]+b[index]; 
     }  
  }  
}  

void main() {  
   .....  
   add_matrix(a,b,c,N);  
}  

24

L2:Introduction to CUDA


CUDA C program 
__global__ void add_matrix_gpu(float *a, 

float *b, float *c, intN) 
{  
   int i =blockIdx.x*blockDim.x+threadIdx.x; 
   int j=blockIdx.y*blockDim.y+threadIdx.y; 
   int index =i+j*N;  
   if( i <N && j <N)  
     c[index]=a[index]+b[index];  
}  

void main() {  
   dim3 dimBlock(blocksize,blocksize);  
   dim3 dimGrid(N/dimBlock.x,N/dimBlock.y); 

add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b
,c,N);  

}  

Example source: Austin Robison, NVIDIA 



Closer Inspection of Computation and Data 
Partitioning 

• Define 2-d set of blocks, and 2-d set of threads per 
block 

• Each thread identifies what element of the matrix it 
operates on 

25

 L2:Introduction to CUDA


 dim3 dimBlock(blocksize,blocksize);  
 dim3 dimGrid(N/dimBlock.x,N/dimBlock.y); 

   int i=blockIdx.x*blockDim.x+threadIdx.x; 
   int j=blockIdx.y*blockDim.y+threadIdx.y; 
   int index =i+j*N;  
   if( i <N && j <N)  
     c[index]=a[index]+b[index];  

CS6963 



26

L2:Introduction to CUDA


Summary of Lecture 
• Introduction to CUDA 
• Essentially, a few extensions to C + API supporting 

heterogeneous data-parallel CPU+GPU execution 
-  Computation partitioning 
- Data partititioning (parts of this implied by decomposition into 

threads) 
- Data organization and management 
-  Concurrency management 

• Compiler nvcc takes as input a .cu program and produces 
-  C Code for host processor (CPU), compiled by native C compiler 
-  Code for device processor (GPU), compiled by nvcc compiler 

• Two examples 
-  Parallel reduction 
-  Embarassingly/Pleasingly parallel computation 

CS6963 



27

 L2:Introduction to CUDA


Next Week 
• A few more details to prepare you for your first 

assignment 
- More on synchronization for reductions 
- More on decomposing into grids and thread blocks 
- More on run-time library 

-  Especially constructs to test for correct execution 
- A little on debugging 

CS6963 


