L2: Introduction to
CUDA

January 14, 2009

1

CS6963 L2:Introduction to CUDA

Outline

» Overview of the CUDA Programming Model for
NVIDIA systems

* Motivation for programming model
* Presentation of syntax

» Simple working example (also on website)

* Reading: GPU Gems 2, Ch. 31;
CUDA 2.0 Manual, particularly Chapters 2 and 4

This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.uiuc.edu/ece498/al1/

and Austin Robison (NVIDIA)

2

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

CUDA (Compute Unified Device Architecture)

* Data-parallel programming interface to GPU

- Data to be operated on is discretized into independent partition of
memory

- Each thread performs roughly same computation to different
partition of data

- When appropriate, easy to express and very efficient parallelization

* Programmer expresses
- Thread programs to be launched on GPU, and how to launch
- Data organization and movement between host and GPU
- Synchronization, memory management, testing, ...

* CUDA is one of first to support heterogeneous
architectures (more later in the semesfter)

- CUDA environment
- Compiler, run-time utilities, libraries, emulation, performance

3 THE
CS6963 L2:Introduction to CUDA U UNIVERSITY
OF UTAH

Today's Lecture
* Goal is to enable writing CUDA programs right away

- Not efficient ones - need to explain architecture and
mapping for that (soon)

- Not correct ones - need to discuss how to reason about
correctness (also soon)

- Limited discussion of why these constructs are used or
comparison with other programming models (more as
semester progresses)

- Limited discussion of how to use CUDA environment
(more next week)

- No discussion of how to debug. We'll cover that as best
we can during the semester.

4

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

What Programmer Expresses in CUDA

- D)
a Interconnect between devices and memories %
S < > o

LL
o O
@) >
T O L

)

- Computation partitioning (where does computation occur?)
- Declarations on functions __host__, _ global__, _ device___
- Mapping of thread programs to device: compute <«<<gs, bs>>>(<args>)

. Ea’r%)par’ri’rioning (where does data reside, who may access it and
ow:

- Declarations on data __shared__ , device_ , __constant__, ..

- Data management and orchestration
- Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

- Concurrency management

- E.g. __synchthreads() .

CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

_Minimal Extensions to C + APT

y DZC'SPCCS __device float filter[N];
- global, device,

shared local __global void convolve (float *image)
constant {
__shared float region[M];
- Keywords
- ThreadIdx, blOCkIdX region|[threadIdx] = imagel[i];
) Iﬂff‘lﬂSlCS __syncthreads ()
- __syncthreads
image[]j] = result;

}

Runtime API

- Memory SYH’\bOl // Allocate GPU memory
CXCCUTIO'H manag'emen-r void *myimage = cudaMalloc (bytes)

// 100 blocks, 10 threads per block

* Function launch convolve<<<100, 10>>> (myimage):;
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 6 {J"[i] [VERSITY
ECE 498AL, University of lllinois, Urbana-Champaign L2: Introduction to CUDA OF UTAH

tware Developer's Kit (SDK

Libraries:FFT, BLAS.,... Integrated CPU
Example Source Code and GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing CPU Host Code

CUDA Debugger
Driver Profiler Standard C Compiler

CPU

7

. . . THE
Slide source: Austin Robison (NVIDIA) L2:Introduction to CUDA u UNIVERSITY
OF UTAH

NVCC Compiler's Role: Partition Code and
Compile for Device

mycode.cu

Compiled by native

int main_data;
__shared__ int sdata;

Main() { }
__host_ hfunc () {
int hdata;
<<<gfunc(g,b,m)>>>();

}

__device _ dfunc() {
int ddata;
}

Interface Host Only

Device Only

compiler: gcc, icc, cc

int main_data;

Main() {}
__host_ hfunc () {
int hdata;

<<<gfunc(g,b,m)>>>
();
}

CS6963

8
L2:Introduction to CUDA

Compiled by nvcc
compiler

__shared__ sdata;

__device _ dfunc() {
int ddata;

}

THE

U OF UTAH

UNIVERSITY

CUDA Programming Model:

A Highly Multithreaded Coprocessor

* The GPU is viewed as a compute device that:
- TIs a coprocessor to the CPU or host

- Has its own DRAM (device memory)
- Runs many threads in parallel

* Data-parallel portions of an application are executed
on the device as kernels which run in parallel on many

threads

- Differences between GPU and CPU threads

- GPU threads are extremely lightweight
- Very little creation overhead

- 6PU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

9 THE
CS6963 L2: Introduction to CUDA u 8[;] IJ/—IEARPSIITY

Thread Batching: Grids and Blocks

A kernel is executed as a grid
of thread blocks

- All threads share data
memory space

A thread block is a batch of
threads that can cooperate
with each other by:

- Synchronizing their execution

- For hazard-free shared
memory accesses

- Efficiently sharing data through
a low latency shared memory

Two threads from two
different blocks cannot
cooperate

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Host Device

Kernel >
1

Grid 1

Block
(0,0)

Block
(1,0)

Block
(2,0)

0,4

Block-

7’
’

Block
(1,1)

1
\‘ Block

(2,1)

Kernel

* Grid 2

2

Block (1, 1)

10

L2: Introduction to CUDA

Ui VERSITY
OF UTAH

Block and Thread IDs

- Threads and blocks have Device
IDs Grid 1
- So each thread can decide Block Block Block
what data to work on 0.0y || 0.0 || 20
- BIOCk ID 1D or ZD Block Block Block
(blockIdx.x, blockIdx.y) e fet L&
- Thread ID: 1D, 2D, or 3D
(threadIdx.{x.,y,z}) SR,
+ Simplifies memory
addressing when processing

multidimensional data
- TImage processing
- Solving PDEs on volumes

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 11 {JH;] IVERSITY
ECE 498AL, University of lllinois, Urbana-Champaign |2 Introduction to CUDA OF UTAH

Simple working code example

* Goal for this example:
- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture

- What does it do?

- Scan elements of array of numbers (any of O to 9)
- How many times does "6" appear?

- Array of 16 elements, each thread examines 4 elements, 1
block in grid, 1 grid

s Jo Jads JoJsJade o J Jad JoJo Jal.

threadldx.x = 0 examines in_array elements 0, 4, 8, 12
threadldx.x = 1 examines in_array elements 1, 5, 9, 13

Known as a
cyclic data

threadldx.x = 3 examines in_array elements 3, 7, 11, 15 distribution

12 THE

CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

CUDA Pseudo-Code
MAIN PROGRAM:

Initialization

* Allocate memor?/ on host for
input and outpu

- Assignh random numbers to
inpuf array

Call host function

Calculate final output from
per-thread output

Print result

GLOBAL FUNCTION:

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function

Copy device output to host

DEVICE FUNCTION:

Thread scans subset of array elements Compare current element

Call device function to compare with "6"

Compute local result
13

and "6
Return 1 if same, else O

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY

OF UTAH

Main Program: Preliminaries

MAIN PROGRAM: #include <stdio.h>
Tnitialization #define SIZE 16

- Allocate memor])/ on host for #define BLOCKSIZE 4

input and outpu

' ﬁﬁ,‘?'&;ﬁ&dom numbers to int main(int argc, char **argv)
Call host function {
Calculate final output from int *in_array, *out_array;
per-thread output
Print result)
14 o
CS6963 L2-Introduction to CUDA u UNIVERSITY

Main Program: Invoke Global Function

MAIN PROGRAM: #include <stdio.h>

Tnitialization (OMIT) #define SIZE 16

#define BLOCKSIZE 4
- Allocate memory on host for .
input and oufme __host__ void outer_compute

, int *in_arr, int *out_arr);
: Assugn random numbers to (r — —arr)

inpuf array int main(int argc, char **argv)
Call host function {
. : x; x .
Calculate final output from Int in_array, “out_array;
per-thread output /* initialization */ ..
Print result outer_compute(in_array, out_array);
}
15 THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Main Program: Calculate Output & Print Result

MAIN PROGRAM: #include <stdio.h>

o #define SIZE 16
Initialization (OMIT) #define BLOCKSIZE 4
- Allocate memor]}/ on host for

input and outpu __host__ void outer_compute
: Agsi]gn randorF:\ humbers to (int *in_arr, int *out_arr);

inpuf array int main(int argc, char **argv)
Call host function {
Calculate final output from InT “in_array, “ouf_array:
per-thread output int sum = O;
Print result /* initialization */ ...

outer_compute(in_array, out_array);
for (int i=0; i<BLOCKSIZE; i++) {
sum+=out_arrayl[i].
}
printf ("Result = %d\n",sum);
)

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

_Host Function: Preliminaries & Allocation
HOST FUNCTION: __host__ void outer_compute (int

h_in_array, int *h_out_array) {

Allocate memory on device for

copy of input and output int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int)),

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

17

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Host Function: Copy Data To/From Host
HOST FUNCTION: __host__ void outer_compute (int

h_in_array, int *h_out_array) {
Allocate memory on device for int *d in array, *d out array:
copy of input and output S AR

Copy input to device cudaMalloc((void **) &d_in_array,
Set up grid/block SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,

CG” global fUHCTiOH BLOC SIZE*SIZCO_'F(EH'F)),'
Copy device output to host cudaMemcpy(d_in_array, h_in_array,
SIZlg)’Ys(izeoi"(im‘),y Y

cudaMemcpyHost ToDevice);
.. do computation ...

cudabercpylh sut arroy

d_out_array,
oo
cudaMemcpyDeviceToHost);

18

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Host Function: Setup & Call Global Function
HOST FUNCTION: __host__ void outer_compute (int

h_in_array, int *h_out_array) {

Allocate memory on device for int *d in array. *d out array:
copy of input ané output —ih_darray, ~@_oui_arrdy.

Copy input to device cudaMalloc((void **) &d_in_array,
Set up gr'id/block SIZE snzeof(m‘r)),
: cudaMalloc((void **) &d_out_array,
Call globa/ function BLOC SIZE*S)IZZO?:(IH'I—')), Y
Copy device output to host cudaMemcpy(d_in_array, h_in_array,
SIZE’YéizeoﬂinT),y /

cudaMemcpyHostToDevice);

msize = (SIZE+BLOCKSIZE) *
sizeof (int);

compute««<1 BLOCKSIZE msize)>>>
(d_in_array, d_out_array);

cudaMemcpy(h_out _array, d_out_array,
SRy ey /

THE
CS6963 L2:Introduction to CUDA U UNIVERSITY
OF UTAH

Global Function

GLOBAL FUNCTION: global__ void compute(int

read) ~*d_in,int *d_out) {
Te'fgﬁ\erffs“ ns subset of array d_out[threadIdx.x] = O;

Call device function to compare for (int i=0; i<SIZE/BLOCKSIZE;
with “6" i++)
Compute local result {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] +=
compare(val, 6);

}
}

20

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Device Function

DEVICE FUNCTION: __device___int

compare(int a, int b) {

C re current el nt :
O g Mg current eleme if (a == b) return 1

Return 1 if same, else O return O;

}

21

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Reductions

* This type of computation is called a parallel reduction
- Operation is applied to large data structure

- Computed result represents the aggregate solution across the large
data structure

- Large data structure = computed result (perhaps single humber)
[dimensionality reduced]
* Why might parallel reductions be well-suited to GPUs?

* What if we tried o compute the final sum on the GPUs?
(next class and assignment)

22

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Standard Parallel Construct

- Sometimes called "embarassingly parallel” or
pleasingly parallel

» Each thread is completely independent of the others
* Final result copied to CPU

» Another example, adding two matrices:

- A more careful examination of decomposing computation
into grids and thread blocks

23

THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Another Example: Adding Two Matrices

CUDA C program

CPU € program lobal__ void add_matrix_gpu(float *
void add_matrix_cpu(float *a, float *b, _ﬁooataﬂs_ \#?;ata*c_firr\\cthr')lX_gpu(oat —a,
float *c, int N) ’ ’

{
{ .. int i =blockIdx.x*blockDim.x+threadIdx.x;
int i, j, index: o N]
for (i=0:i<N:i++) { int j=blockIdx.y*blockDim.y+threadIdx.y:
for (:i=0':<N°'++){ int index =i+j*N:
TR (i <N && j <N)
index =i+J"N; c[index]=a[index]+b[index]:
c[index]=a[index]+b[index];)) ’
}
} . .
} void main() {
dim3 dimBlock(blocksize,blocksize):;
void main() { dim3 dim6rid(N/dimBlock.x,N/dimBlock.y);
----- add_matrix_gpu< < <dim6rid,dimBlock>>>(a,b
add_matrix(a,b,c,N); .¢.N):
} }

24

THE
Example source: Austin Robison, NVIDIA L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Closer Inspection of Computation and Data
Partitioning

- Elefi&\e 2-d set of blocks, and 2-d set of threads per
ocC

dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x,N/dimBlock.y);

- Each thread identifies what element of the matrix it
operates on

int i=blockldx.x*blockDim.x+threadldx.x;

int j=blockldx.y*blockDim.y+threadldx.y;

int index =i+j*N;

if(i <N && j <N)
c[index]=a[index]+b[index];

25 THE

CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Summary of Lecture

* Introduction to CUDA
» Essentially, a few extensions 1o C + API supporting
heterogeneous data-parallel CPU+GPU execution
- Computation partitioning

- Data partititioning (parts of this implied by decomposition into
threads)

- Data organization and management
- Concurrency management

» Compiler nvcc takes as input a .cu program and produces
- C Code for host processor (CPU), compiled by native C compiler
- Code for device processor (GPU), compiled by nvcc compiler

* Two examples
- Parallel reduction
- Embarassingly/Pleasingly parallel computation

26 THE
CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

Next Week

+ A few more details to prepare you for your first
assignment

- More on synchronization for reductions
- More on decomposing into grids and thread blocks

- More on run-time library
- Especially constructs to test for correct execution

- A little on debugging

27 THE

CS6963 L2:Introduction to CUDA u UNIVERSITY
OF UTAH

