
4/22/09

1

CS6963

L19: Dynamic Task
Queues and More
Synchronization

L19: Dynamic Task Queues
2 CS6963

Administrative
• Design review feedback

- Sent out yesterday – feel free to ask questions
•  Deadline Extended to May 4: Symposium on Application

Accelerators in High Performance Computing
 http://www.saahpc.org/
•  Final Reports on projects

-  Poster session April 29 with dry run April 27
-  Also, submit written document and software by May 6
-  Invite your friends! I’ll invite faculty, NVIDIA, graduate

students, application owners, ..
•  Industrial Advisory Board meeting on April 29

- There is a poster session immediately following class
-  I was asked to select a few projects (4-5) to be presented
- The School will spring for printing costs for your poster!
-  Posters need to be submitted for printing immediately

following Monday’s class

L19: Dynamic Task Queues
3 CS6963

Final Project Presentation
• Dry run on April 27

-  Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2’x3’ poster,

or bring your own poster.

• Final Report on Projects due May 6
- Submit code
- And written document, roughly 10 pages, based on earlier

submission.
-  In addition to original proposal, include

-  Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
-  Performance Measurement
- Related Work (from DR)

L19: Dynamic Task Queues
4 CS6963

Let’s Talk about Demos
• For some of you, with very visual projects, I asked

you to think about demos for the poster session
• This is not a requirement, just something that would

enhance the poster session
• Realistic?

-  I know everyone’s laptops are slow …
- … and don’t have enough memory to solve very large

problems

• Creative Suggestions?

4/22/09

2

L19: Dynamic Task Queues
5 CS6963

Sources for Today’s Lecture
•  “On Dynamic Load Balancing on Graphics Processors,” D.

Cederman and P. Tsigas, Graphics Hardware (2008).
http://www.cs.chalmers.se/~cederman/papers/

GPU_Load_Balancing-GH08.pdf
•  “A simple, fast and scalable non-blocking concurrent

FIFO queue for shared memory multiprocessor systems,”
P. Tsigas and Y. Zhang, SPAA 2001.

(more on lock-free queue)
• Thread Building Blocks
http://www.threadingbuildingblocks.org/
(more on task stealing)

L19: Dynamic Task Queues
6 CS6963

Last Time: Simple Lock Using Atomic Updates
Can you use atomic updates to create a lock variable?

Consider primitives:

int lockVar;

atomicAdd(&lockVar, 1);
atomicAdd(&lockVar,-1);

L19: Dynamic Task Queues
7 CS6963

Suggested Implementation
// also unsigned int and long long versions
int atomicCAS(int* address, int compare, int val);
reads the 32-bit or 64-bit word old located at the address

address in global or shared memory, computes (old ==
compare ? val : old), and stores the result back to memory
at the same address. These three operations are
performed in one atomic transaction. The function returns
old (Compare And Swap). 64-bit words are only supported
for global memory.

__device__ void getLock(int *lockVarPtr) {
while (atomicCAS(lockVarPtr, 0, 1) == 1);
}

L19: Dynamic Task Queues
8 CS6963

Constructing a dynamic task queue on GPUs
• Must use some sort of atomic operation for global

synchronization to enqueue and dequeue tasks
• Numerous decisions about how to manage task queues

- One on every SM?
- A global task queue?
- The former can be made far more efficient but also more

prone to load imbalance

• Many choices of how to do synchronization
- Optimize for properties of task queue (e.g., very large task

queues can use simpler mechanisms)

• All proposed approaches have a statically allocated
task list that must be as large as the max number of
waiting tasks

4/22/09

3

L19: Dynamic Task Queues
9 CS6963

Synchronization
• Blocking

- Uses mutual exclusion to only allow one process at a time to
access the object.

•  Lockfree
- Multiple processes can access the object concurrently. At

least one operation in a set of concurrent operations
finishes in a finite number of its own steps.

• Waitfree
- Multiple processes can access the object concurrently.

Every operation finishes in a finite number of its own steps.

Slide source: Daniel Cederman
L19: Dynamic Task Queues

10 CS6963

Load Balancing Methods
• Blocking Task Queue
• Non-blocking Task Queue
• Task Stealing
• Static Task List

Slide source: Daniel Cederman

L19: Dynamic Task Queues
11 CS6963

Static Task List (Recommended)
function DEQUEUE(q, id)
 return q.in[id] ;
function ENQUEUE(q, task)
 localtail ← atomicAdd (&q.tail, 1)
 q.out[localtail] = task
function NEWTASKCNT(q)
 q.in, q.out , oldtail , q.tail ← q.out , q.in, q.tail, 0
 return oldtail
procedure MAIN(taskinit)
 q.in, q.out ← newarray(maxsize), newarray(maxsize)
 q.tail ← 0
 enqueue(q, taskinit)
 blockcnt ← newtaskcnt (q)
 while blockcnt != 0 do
 run blockcnt blocks in parallel
 t ← dequeue(q, TBid)
 subtasks ← doWork(t)
 for each nt in subtasks do
 enqueue(q, nt)
 blocks ← newtaskcnt (q)

Two lists:
 q_in is read only and
not synchronized
 q_out is write only and
is updated atomically

When NEWTASKCNT is
called at the end of major
task scheduling phase,
q_in and q_out are
swapped

Synchronization required
to insert tasks, but at
least one gets through
(wait free)

L19: Dynamic Task Queues
12 CS6963

Blocking Dynamic Task Queue
function DEQUEUE(q)
 while atomicCAS(&q.lock, 0, 1) == 1 do;
 if q.beg != q.end then
 q.beg ++
 result ← q.data[q.beg]
 else
 result ← NIL
 q.lock ← 0
 return result
function ENQUEUE(q, task)
 while atomicCAS(&q.lock, 0, 1) == 1 do;

 q.end++
 q.data[q.end] ← task
 q.lock ← 0

Use lock for both
adding
and deleting tasks
from the queue.

All other threads
block waiting for lock.

Potentially very
inefficient, particularly
for fine-grained tasks

4/22/09

4

L19: Dynamic Task Queues
13 CS6963

Lock-free Dynamic Task Queue
function DEQUEUE(q)
 oldbeg ← q.beg
 lbeg ← oldbeg
 while task = q.data[lbeg] == NI L do
 lbeg ++
 if atomicCAS(&q.data[l beg], task, NIL) != task then
 restart
 if lbeg mod x == 0 then
 atomicCAS(&q.beg, oldbeg, lbeg)
 return task
function ENQUEUE(q, task)
 oldend ← q.end
 lend ← oldend
 while q.data[lend] != NIL do
 lend ++
 if atomicCAS(&q.data[lend], NIL, task) != NIL then
 restart
 if lend mod x == 0 then
 atomicCAS(&q.end , oldend, lend)

Idea:
At least one thread
will succeed to add or
remove task from
queue

Optimization:
Only update
beginning and end
with atomicCAS every
x elements.

L19: Dynamic Task Queues
14 CS6963

Task Stealing
• No code provided in paper
• Idea:

- A set of independent task queues.
- When a task queue becomes empty, it goes out to other task

queues to find available work
-  Lots and lots of engineering needed to get this right
-  Best work on this is in Intel Thread Building Blocks

L19: Dynamic Task Queues
15 CS6963

General Issues
• One or multiple task queues?
• Where does task queue reside?

-  If possible, in shared memory
- Actual tasks can be stored elsewhere, perhaps in global

memory

