
4/22/09

1

CS6963

L18: Global
Synchronization

and Sorting

L18: Synchronization and Sorting
2 CS6963

Administrative
• Grading

- Should have exams. Nice job!
- Design review written feedback later today

• TODAY: Cross-cutting systems seminar,
 Monday, April 20, 12:15-1:30PM, LCR: “Technology Drivers

 for Multicore Architectures,” Rajeev Balasubramonian,
 Mary Hall, Ganesh Gopalakrishnan, John Regehr

•  Deadline Extended to May 4: Symposium on Application
Accelerators in High Performance Computing

 http://www.saahpc.org/
•  Final Reports on projects

-  Poster session April 29 with dry run April 27
-  Also, submit written document and software by May 6
-  Invite your friends! I’ll invite faculty, NVIDIA, graduate

students, application owners, ..

L18: Synchronization and Sorting
3 CS6963

Final Project Presentation
• Dry run on April 27

-  Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2’x3’ poster,

or bring your own poster.

• Final Report on Projects due May 6
- Submit code
- And written document, roughly 10 pages, based on earlier

submission.
-  In addition to original proposal, include

-  Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
-  Performance Measurement
- Related Work (from DR)

L18: Synchronization and Sorting
4 CS6963

Sources for Today’s Lecture
• Global barrier, Vasily Volkov code
• Suggested locking code
• Bitonic sort (CUDA zone)
• Erik Sintorn, Ulf Assarson. Fast Parallel GPU-Sorting

Using a Hybrid Algorithm.Journal of Parallel and
Distributed Computing, Volume 68, Issue 10, Pages
1381-1388, October 2008.

http://www.ce.chalmers.se/~uffe/hybridsortElsevier.pdf

4/22/09

2

L18: Synchronization and Sorting
5 CS6963

Global Barrier – What does it do?
// assumes that block size equals to number of blocks
__global__ void barrier(volatile int *slave2master, volatile int

*master2slave, int niterations) {
 for(int id = 1; id <= niterations; id++) {
 if(blockIdx.x == 0) {
 //master thread block: wait until all slaves signal, then signal

 if(threadIdx.x != 0)
 while(slave2master[threadIdx.x] != id);
 __syncthreads();
 master2slave[threadIdx.x] = id;
 }
 else {
 //slave thread block: signal to the master, wait for reply
 if(threadIdx.x == 0) {
 slave2master[blockIdx.x] = id;
 while(master2slave[blockIdx.x] != id);
 }
 __syncthreads();
 }
 }
}

L18: Synchronization and Sorting
6 CS6963

Questions
• Safe? Why?
• Multiple iterations?

L18: Synchronization and Sorting
7 CS6963

Simple Lock Using Atomic Updates
Can you use atomic updates to create a lock variable?

Consider primitives:

int lockVar;

atomicAdd(&lockVar, 1);
atomicAdd(&lockVar,-1);

L18: Synchronization and Sorting
8 CS6963

Sorting: Bitonic Sort from CUDA zone
__global__ static void bitonicSort(int * values) {
 extern __shared__ int shared[];
 const unsigned int tid = threadIdx.x;
 // Copy input to shared mem.
 shared[tid] = values[tid];
 __syncthreads();
 // Parallel bitonic sort.
 for (unsigned int k = 2; k <= NUM; k *= 2) {
 // Bitonic merge:
 for (unsigned int j = k / 2; j>0; j /= 2) {
 unsigned int ixj = tid ^ j;
 if (ixj > tid) {
 if ((tid & k) == 0) {
 if (shared[tid] > shared[ixj])
 swap(shared[tid], shared[ixj]);
 }
 else {
 if (shared[tid] < shared[ixj])
 swap(shared[tid], shared[ixj]);
 }
 }
 __syncthreads();
 }
 }
 // Write result.
 values[tid] = shared[tid];
}

4/22/09

3

L18: Synchronization and Sorting
9 CS6963

Features of Implementation
• All data fits in shared memory (sorted from there)
• Time complexity: O(n(log n)2)

L18: Synchronization and Sorting
10 CS6963

New Sorting Algorithm (Sintorn and Assarsson)
• Each pass:

- Merge 2L sorted lists into L sorted lists
- When L is less than the number of 2*SMs, switch to

• Three parts:
- Histogramming: to split input list into L independent sublists

for Pivot Points
-  Bucketsort: to split into lists than can be sorted using next

step
- Vector-Mergesort:

-  Elements are grouped into 4-float vectores and a kernel sorts
each vector internally

- Repeat until sublist is sorted

• Results:
-  20% improvement over radix sort, best GPU algorithm
-  6-14 times faster than quicksort on CPU

