L15: Design Review and CUBLAS Paper Discussion

CS6963

Administrative

- Bill Dally (Chief Scientist, NVIDIA and Stanford)
 - Monday, April 6, 11-12, WEB 3760
 - "Stream Programming: Parallel Processing Made Simple"
 - Arrive early
- · Design Reviews, starting April 8 and 10
 - Volunteers for April 8
 - Volunteers for April 10
- · Final Reports on projects
 - Poster session the week of April 27 with dry run the previous week
 - Also, submit written document and software
 - Invite your friends! I'll invite faculty, NVIDIA, graduate students, application owners, ..

CS6963

L16: CUBLAS paper

Design Reviews

- Goal is to see a solid plan for each project and make sure projects are on track
 - Plan to evolve project so that results guaranteed
 - Show at least one thing is working
 - How work is being divided among team members
- \cdot Major suggestions from proposals
 - Project complexity break it down into smaller chunks with evolutionary strategy $\,$
 - Add references what has been done before? Known algorithm? GPU implementation?
 - In some cases, claim no communication but it seems needed to me $\,$

CS6963

L16: CUBLAS paper

Design Reviews

- · Oral, 10-minute Q&A session
 - Each team member presents one part
- Team should identify "lead" to present plan
- · Three major parts:
 - I. Overview
 - Define computation and high-level mapping to $\ensuremath{\textit{GPU}}$
 - II. Project Plan
 - The pieces and who is doing what.
 - What is done so far? (Make sure something is working by the design review)
 - III. Related Work
 - Prior sequential or parallel algorithms/implementations
 - Prior GPU implementations (or similar computations)
- Submit slides and written document revising proposal that covers these and cleans up anything missing from proposal.

CS6963

L16: CUBLAS paper

Publishing your projects?

- I would like to see a few projects from this class be published, perhaps in workshops
 - I am willing to help with writing and positioning
- · Publishing the work may require additional effort beyond course requirements or timetable of semester
 - So not appropriate for everyone, and certainly not part of your grade in course
- Let's look at some examples (also consider for related work)

CS6963

L16: CUBLAS paper

Places to look for examples NVIDIA CUDA Zone

- Huge list of research projects using CUDA with speedups ranging from 1.3x to 420x
- Many of your projects are related to projects listed there
- http://www.nvidia.com/cuda

· GPGPU

- http://www.gpgpu.org
- Links to workshops, research groups, and news from industry

Some recent workshops

- SIAM CSE'09: Scientific Computing on Emerging Many-Core Architectures, http://people.maths.ox.ac.uk/~gilesm/SIAM_CSE/index.html
- WORKSHOP on GPU Supercomputing 2009, National Taiwan University, http://cqse.ntu.edu.tw/cqse/gpu2009.html
- Workshop on General-Purpose Computation on Graphics Processing Units, http://www.ece.neu.edu/groups/nucar/GPGPU/ L16: CUBLAS paper

Places to look for examples, cont

- · Upcoming calls
 - PPAM (Parallel Processing and Applied Mathematics): due 4/10, also in Poland...
 - Symposium on Application Accelerators in High Performance Computing (SAAHPC'09), http://www.saahpc.org/, 2-3 page abstracts due 4/20
 - Probably, some new calls over the summer
 - Also, application workshops and conferences

CS6963

L16: CUBLAS paper

Today's Lecture

Presenting "Benchmarking GPUs to Tune Dense Linear Algebra", Vasily Volkov and James W. Demmel, Proceedings of SCO8, November, 2008.

Winner of SC08 Best Paper Award. A MUST READ FOR THIS CLASS!!!

Paper: (in ACM Digital Library)

http://portal.acm.org/citation.cfm?id=1413402

Slides:

http://www.eecs.berkeley.edu/~volkov/volkov08-sc08talk.pdf

CS6963

L16: CUBLAS paper

Paper Highlights

- Use short vectors, maximize usage of registers, limit usage of shared memory
- Global synchronization across blocks using atomic operations, made efficient (I'll probe further on this)
- Discovered a number of performance limitations and architectural features
 - There's a TLB. Who knew!
- Exceeds performance of CUBLAS 1.0 by 60% and runs at close to peak of hardware
- Uses decuda to figure out what is happening in code generation.
 - A third party disassembler of GPU binaries based on reverse engineering of $\ensuremath{\mathsf{ISA}}$

CS6963

L16: CUBLAS paper

A Few Details not in SCO8 Presentation

- Latencies
 - Launch overhead of 3-7 micro-seconds (asynchronous) or 10-14 micro-seconds (synchronous)
- · Effective memory bandwidth
 - Time = 11micro-seconds (o/h) + #bytes/3.3GB/s
- · Talks about L1 and L2 cache (texture cache) and TLB
- · Measurements derived via microbenchmarking
 - 11
 - 20-way set associative L1s, with 5KB, 8 of them
 Latency of 280 cycles for a hit (designed for increased bw
 rather than minimizing latency)
 - L2: - 24-way set associative L2s, with 32KB, 6 of them
 - TLB:
 - 16-entry, fully associative TLB

CS6963

L16: CUBLAS paper

