


1

Reminder: Content of Proposal, MPM/GIMP as Example

III. Suitability for G	PU acceleration, cont.	
 Synchronization need to be pro host. 	on and Communication: Discuss what c tected by synchronization, or commu	data structures may inication through
Some challenges on bou	ndaries between nodes in grid	
	l: Discuss the data footprint and anti m host memory.	icipated cost of
Measure grid and patch computations to reduce	es to discover data footprint. Consic copying overhead.	der ways to combine
IV. Intellectual Chal	lenges	
- Generally, wha	t makes this computation worthy of a	a project?
Importance of computa with scope, managing co	tion, and challenges in partitioning co pying overhead	mputation, dealing
 Point to any dispeedup 	fficulties you anticipate at present in	n achieving high
See previous		
CS6963	5 L10: Floating Point	

Midterm Exam • Goal is to reinforce understanding of CUDA and NVIDIA architecture Material will come from lecture notes and assignments • In class, should not be difficult to finish

Parts of Exam

- I.
- Definitions A list of 10 terms you will be asked to define
- II. Constraints Understand constraints on numbers of threads, blocks, warps, size of storage

III. Problem Solving

- Derive distance vectors for sequential code and use these to transform code to CUDA, making use of constant memory
- Given some CUDA code, indicate whether global memory accesses will be coalesced and whether there will be bank conflicts in shared memory
- shared memory Given some CUDA code, add synchronization to derive a correct implementation Given some CUDA code, provide an optimized version that will have fewer divergent branches Given some CUDA code, derive a partitioning into threads and blocks that does not exceed various hardware limits

- IV. (Brief) Essay Question
 - Pick one from a set of 4

UNIVERSITY OF UTAH

How Much? How Many?

- How many threads per block? Max 512
- How many blocks per grid? Max 65535
- How many threads per warp? 32
- How many warps per multiprocessor? 24
- · How much shared memory per streaming multiprocessor? 16Kbytes
- How many registers per streaming multiprocessor? 8192
- Size of constant cache: 8Kbytes

UNIVERSITY

Syllabus

- L1 & L2: Introduction and CUDA Overview
 * Not much there...
 L3: Synchronization and Data Partitioning
 What does _____syncthreads () do?
 Indexing to map portions of a data structure to a particular thread
 L4: Hardware and Execution Model
 How are threads in a block scheduled? How are blocks mapped to streaming multiprocessors?
 L5: Dependence Analysis and Parallelization
 Constructing distance vectors
 Determining if parallelization is safe
 L6: Memory Hierarchy I: Data Placement
 What are the different memory spaces on the device, who can read/write them?
 How do you tell the compiler that something belongs in a particular memory space?

UNIVERSITY OF UTAH

Syllabus

- L7: Memory Hierarchy II: Reuse and Tiling Safety and profitability of tiling L8: Memory Hierarchy III: Memory Bandwidth
- Understanding global memory coalescing (for compute capability < 1.2 and > 1.2)
- Understanding memory bank conflicts
 L9: Control Flow
 Divergent branches

- Execution model
- L10: Floating Point
- Intrinsics vs. arithmetic operations, what is more precise?
 What operations can be performed in 4 cycles, and what operations take longer?
 L11: Tools: Occupancy Calculator and Profiler
 How do they help you?

UNIVERSITY

Next Time

- March 23:
- Guest Lecture, Austin Robison
- March 25: - MIDTERM, in class

UNIVERSITY