
3/5/09

1

L10: Floating Point Issues
and Project

CS6963 

Administrative Issues
•  Project proposals

– Due 5PM, Friday, March 13 (hard deadline)
•  Homework (Lab 2)

– Due 5PM, Wednesday, March 4
– Where are we?

CS6963 
2

L10: Floa/ng Point 

Outline
•  Floating point

– Mostly single precision
– Accuracy
– What’s fast and what’s not
– Reading: Programmer’s Guide, Appendix B

•  Project
– Ideas on how to approach MPM/GIMP
– Construct list of questions

CS6963 
3

L10: Floa/ng Point 

Single Precision vs.
Double Precision

•  Platforms of compute capability 1.2 and below
only support single precision floating point

•  New systems (GTX, 200 series, Tesla) include
double precision, but much slower than single
precision
–  A single dp arithmetic unit shared by all SPs in an

SM
–  Similarly, a single fused multiply-add unit

•  Suggested strategy:
–  Maximize single precision, use double precision only

where needed
CS6963 

4

L10: Floa/ng Point 

3/5/09

2

Summary: Accuracy vs.
Performance

•  A few operators are IEEE 754-compliant
–  Addition and Multiplication

•  … but some give up precision, presumably in
favor of speed or hardware simplicity
–  Particularly, division

•  Many built in intrinsics perform common
complex operations very fast

•  Some intrinsics have multiple implementations,
to trade off speed and accuracy
– e.g., intrinsic __sin() (fast but imprecise)

versus sin() (much slower)
CS6963 

5

L10: Floa/ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Deviations from IEEE-754
•  Addition and Multiplication are IEEE 754

compliant
–  Maximum 0.5 ulp (units in the least place) error

•  However, often combined into multiply-add
(FMAD)
–  Intermediate result is truncated

•  Division is non-compliant (2 ulp)
•  Not all rounding modes are supported
•  Denormalized numbers are not supported
•  No mechanism to detect floating-point exceptions

6

L10: Floa/ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign 

Arithmetic Instruction
Throughput

•  int and float add, shift, min, max and float mul, mad:
4 cycles per warp
–  int multiply (*) is by default 32-bit

•  requires multiple cycles / warp
–  Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit

int multiply

•  Integer divide and modulo are expensive
–  Compiler will convert literal power-of-2 divides to shifts
–  Be explicit in cases where compiler can’t tell that divisor is

a power of 2!
–  Useful trick: foo % n == foo & (n-1) if n is a power of 2

7

L10: Floa/ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign  8 

Arithmetic Instruction
Throughput

•  Reciprocal, reciprocal square root, sin/cos,
log, exp: 16 cycles per warp
–  These are the versions prefixed with “__”
–  Examples:__rcp(), __sin(), __exp()

•  Other functions are combinations of the
above
–  y / x == rcp(x) * y == 20 cycles per warp
–  sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp

8

L10: Floa/ng Point 

3/5/09

3

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign  9 

Runtime Math Library
•  There are two types of runtime math

operations
–  __func(): direct mapping to hardware ISA

•  Fast but low accuracy (see prog. guide for details)
•  Examples: __sin(x), __exp(x), __pow(x,y)

–  func() : compile to multiple instructions
•  Slower but higher accuracy (5 ulp, units in the

least place, or less)
•  Examples: sin(x), exp(x), pow(x,y)

•  The -use_fast_math compiler option
forces every func() to compile to __func()

9

L10: Floa/ng Point 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
University of Illinois, Urbana‐Champaign  10 

Make your program float-safe!
•  Future hardware will have double precision support

–  G80 is single-precision only
–  Double precision will have additional performance cost
–  Careless use of double or undeclared types may run more

slowly on G80+
•  Important to be float-safe (be explicit whenever you

want single precision) to avoid using double precision
where it is not needed
–  Add ‘f’ specifier on float literals:

•  foo = bar * 0.123; // double assumed
•  foo = bar * 0.123f; // float explicit

–  Use float version of standard library functions
•  foo = sin(bar); // double assumed
•  foo = sinf(bar); // single precision explicit

10

L10: Floa/ng Point 

Reminder: Content of Proposal,
MPM/GIMP as Example

I.  Team members: Name and a sentence on expertise for each member
Obvious
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
Straightforward adaptation from MPM presentation and/or code
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible

Can measure sequential code

CS6963 
11

L10: Floa/ng Point 

Reminder: Content of Proposal,
MPM/GIMP as Example

III.  Suitability for GPU acceleration, cont.
-  Synchronization and Communication: Discuss what data structures may

need to be protected by synchronization, or communication through
host.

Some challenges, see remainder of lecture
-  Copy Overhead: Discuss the data footprint and anticipated cost of

copying to/from host memory.
Measure grid and patches to discover data footprint. Consider ways to combine
computations to reduce copying overhead.
IV.  Intellectual Challenges

-  Generally, what makes this computation worthy of a project?
Importance of computation, and challenges in partitioning computation, dealing
with scope, managing copying overhead

-  Point to any difficulties you anticipate at present in achieving high
speedup

See previous
CS6963 

12

L10: Floa/ng Point 

3/5/09

4

Projects – How to Approach
•  Example: MPM/GIMP
•  Some questions:

1.  Amdahl’s Law: target bulk of computation
 and can profile to obtain key computations…

2.  Strategy for gradually adding GPU execution to
CPU code while maintaining correctness

3.  How to partition data & computation to avoid
synchronization?

4.  What types of floating point operations and
accuracy requirements?

5.  How to manage copy overhead?
CS6963 

13

L10: Floa/ng Point 

1. Amdahl’s Law
•  Significant fraction of overall

computation?
– Simple test:

•  Time execution of computation to be executed
on GPU in sequential program.

•  What is its percentage of program’s total
execution time?

•  Where is sequential code spending most
of its time?
– Use profiling (gprof, pixie, VTUNE, …)

CS6963 
14

L10: Floa/ng Point 

2. Strategy for Gradual GPU…
•  Looking at MPM/GIMP

– Several core functions used repeatedly
(integrate, interpolate, gradient,
divergence)

– Can we parallelize these individually as a
first step?

– Consider computations and data structures

CS6963 
15

L10: Floa/ng Point 

2. cont.
void operations<S>::integrate(const patch&pch,const

vector<double>&pu,vector<double>&gu){
 for(unsigned g=0;g<gu.size();g++)gu[g]=0.;
 for(unsigned p=0;p<pu.size();p++){
 const partContribs&pcon=pch.pCon[p];
 for(int k=0;k<pcon.Npor;k+=1){
 const partContribs::portion&por=pcon[k];
 gu[por.idx]+=pu[p]*por.weight;
 }
 }
}

gu (represen/ng the 
grid) is updated, but 

only by nearby 
par/cles. 

Most data structures 
are read only! 

CS6963 
16

L10: Floa/ng Point 

3/5/09

5

3. Synchronization
Recall from MPM Presentation
Blue dots corresponding to particles (pu).
Grid structure corresponds to nodes (gu).

How to parallelize without incurring
synchronization overhead?

CS6963 
17

L10: Floa/ng Point 

2. and 3.
•  Other common structure in code
template<typename S> void operations<S>::interpolate(const

patch&pch,vector<Vector2>&pu,const vector<Vector2>&gu){
 for(unsigned p=0;p<pu.size();p++)pu[p]=0.;
 for(unsigned p=0;p<pu.size();p++){
 const partContribs&pcon=pch.pCon[p];
 Vector2&puR=pu[p];
 for(int k=0;k<pcon.Npor;k+=1){
 const partContribs::portion&por=pcon[k];
 const Vector2&guR=gu[por.idx];
 puR.x+=guR.x*por.weight;
 puR.y+=guR.y*por.weight;
 }
 }
}

puR (represen/ng the 
par/cles) is updated, 
but only by nearby 

grid points. 

CS6963 
18

L10: Floa/ng Point 

4. Floating Point
•  MPM/GIMP is a double precision code!
•  Phil:

– Double precision needed for convergence on
fine meshes

– Single precision ok for coarse meshes
•  Conclusion:

– Converting to single precision (float) ok for
this assignment, but hybrid single/double
more desirable in the future

CS6963 
19

L10: Floa/ng Point 

5. Copy overhead?
•  Some example code in MPM/GIMP

sh.integrate (pch,pch.pm,pch.gm);
sh.integrate (pch,pch.pfe,pch.gfe);
sh.divergence(pch,pch.pVS,pch.gfi);
for(int i=0;i<pch.Nnode();++i)pch.gm[i]+=machTol;
for(int i=0;i<pch.Nnode();++i)pch.ga[i]=(pch.gfe[i]+pch.gfi[i])/

pch.gm[i];
…

Exploit reuse of 
gm, gfe, gfi 

Defer copy back to 
host. 

CS6963 
20

L10: Floa/ng Point 

3/5/09

6

Other MPM/GIMP Questions
•  Lab machine set up? Python? Gnuplot?
•  Hybrid data structure to deal with

updates to grid in some cases and
particles in other cases

CS6963 
21

L10: Floa/ng Point 

Next Class
•  Discussion of tools

CS6963 
22

L10: Floa/ng Point 

