
CS6963

Parallel Programming for Graphics
Processing Units (GPUs)

Lecture 1: Introduction

L1: Introduction
1

Course Information

CS6963: Parallel Programming for GPUs,
MW 10:45-12:05, MEB

3105
• Website:

http://www.eng.utah.edu/~cs6963/
• Professor:

Mary Hall
MEB 3466, mhall@cs.utah.edu, 5-1039
Office hours: 12:20-1:20 PM, Mondays

• Teaching Assistant:
Sriram Aananthakrishnan
MEB 3157, sriram@cs.utah.edu
Office hours: 2-3PM, Thursdays

L1: Introduction
2

Lectures (slides and MP3) will be posted on website.

Source Materials for Today’s Lecture

• Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
http://courses.ece.uiuc.edu/ece498/al1/

• Jim Demmel (UCB) and Kathy Yelick (UCB, NERSC)
http://www.eecs.berkeley.edu/~yelick/cs267_sp07/lectures

• NVIDIA:
http://www.nvidia.com

• Others as noted

L1: Introduction
3

Course Objectives
• Learn how to program “graphics” processors

for general-purpose multi-core computing
applications
– Learn how to think in parallel and write correct

parallel programs
– Achieve performance and scalability through

understanding of architecture and software
mapping

• Significant hands-on programming experience
– Develop real applications on real hardware

• Discuss the current parallel computing context
– What are the drivers that make this course timely
– Contemporary programming models and

architectures, and where is the field going
L1: Introduction

4

Grading Criteria

• Homeworks and mini-projects: 25%
• Midterm test: 15%
• Project proposal: 10%
• Project design review: 10%
• Project presentation/demo 15%
• Project final report 20%
• Class participation 5%

L1: Introduction
5

Primary Grade: Team Projects

• Some logistical issues:
– 2-3 person teams
– Projects will start in late February

• Three parts:
– (1) Proposal; (2) Design review; (3) Final report and

demo
• Application code:

– Most students will work on MPM, a particle-in-cell
code.

– Alternative applications must be approved by me
(start early).

L1: Introduction
6

Collaboration Policy

• I encourage discussion and exchange
of information between students.

• But the final work must be your own.
– Do not copy code, tests, assignments or

written reports.
– Do not allow others to copy your code,

tests, assignments or written reports.

L1: Introduction
7

Lab Information
Primary lab
• “lab6” in WEB 130
• Windows machines
• Accounts are supposed to be set up for all who

were registered as of Friday
• Contact opers@eng.utah.edu with questions
Secondary
• Until we get to timing experiments, assignments can

be completed on any machine running CUDA 2.0
(Linux, Windows, MAC OS)

Tertiary
• Tesla S1070 system expected soon

L1: Introduction
8

Text and Notes

1. NVidia, CUDA Programmng Guide, available
from http://www.nvidia.com/object/cuda_develo
p.html for CUDA 2.0 and Windows, Linux or MAC
OS.

2. [Recommended] M. Pharr (ed.), GPU Gems 2 –
Programming Techniques for High Performance
Graphics and General-Purpose Computation,
Addison Wesley, 2005.
http://http.developer.nvidia.com/GPUGems2/gpug
ems2_part01.html

3. [Additional] Grama, A. Gupta, G. Karypis, and V.
Kumar, Introduction to Parallel Computing, 2nd
Ed. (Addison-Wesley, 2003).

4. Additional readings associated with lectures.L1: Introduction
9

Schedule:
A Few Make-up Classes

L1: Introduction
10

A few make-up classes needed due to my travel

Time slot: Friday, 10:45-12:05, MEB 3105

Dates: February 20, March 13, April 3, April 24

Today’s Lecture

• Overview of course (done)
• Important problems require powerful

computers …
– … and powerful computers must be parallel.
– Increasing importance of educating parallel

programmers (you!)
• Why graphics processors?

• Opportunities and limitations
• Developing high-performance parallel

applications
– An optimization perspective

L1: Introduction
11

Parallel and Distributed Computing
• Limited to supercomputers?

– No! Everywhere!
• Scientific applications?

– These are still important, but also many new
commercial applications and new consumer
applications are going to emerge.

• Programming tools adequate and
established?
– No! Many new research challenges

My Research Area

L1: Introduction
12

Why we need powerful computers

L1: Introduction
13

Scientific Simulation:
The Third Pillar of Science

• Traditional scientific and engineering paradigm:
1) Do theory or paper design.
2) Perform experiments or build system.

• Limitations:
– Too difficult -- build large wind tunnels.
– Too expensive -- build a throw-away passenger jet.
– Too slow -- wait for climate or galactic evolution.
– Too dangerous -- weapons, drug design, climate experimentation.

• Computational science paradigm:
3) Use high performance computer systems to simulate the

phenomenon
• Base on known physical laws and efficient numerical methods.

L1: Introduction
14Slide source: Jim Demmel, UC Berkeley

The quest for increasingly more
powerful machines

• Scientific simulation will continue to
push on system requirements:
– To increase the precision of the result
– To get to an answer sooner (e.g., climate

modeling, disaster modeling)
• The U.S. will continue to acquire

systems of increasing scale
– For the above reasons
– And to maintain competitiveness

L1: Introduction
15

A Similar Phenomenon in Commodity
Systems

• More capabilities in software
• Integration across software
• Faster response
• More realistic graphics
• …

L1: Introduction
16

Why powerful computers must be
parallel

L1: Introduction
17

Technology Trends: Moore’s Law

Slide from Maurice Herlihy

Clock speed
flattening

sharply

Transistor
count still

rising

L1: Introduction
18

Techology Trends: Power Issues

From www.electronics-cooling.com/.../jan00_a2f2.jpg

L1: Introduction
19

Power Perspective

G
ig

aF
lo

p/
s

M
eg

aW
at

ts

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1960 1970 1980 1990 2000 2010 2020

Performance (Gflops)
Power

Slide source: Bob Lucas

L1: Introduction
20

L1: Introduction
21

• Key ideas:
– Movement away from increasingly complex

processor design and faster clocks
– Replicated functionality (i.e., parallel) is

simpler to design
– Resources more efficiently utilized
– Huge power management advantages

What to do with all these transistors?

The Multi-Core Paradigm Shift

All Computers are Parallel Computers.
L1: Introduction

22

Who Should Care
About Performance Now?

• Everyone! (Almost)
– Sequential programs will not get faster

• If individual processors are simplified and compete for
shared resources.

• And forget about adding new capabilities to the software!
– Parallel programs will also get slower

• Quest for coarse-grain parallelism at odds with smaller
storage structures and limited bandwidth.

– Managing locality even more important than
parallelism!

• Hierarchies of storage and compute structures

• Small concession: some programs are
nevertheless fast enough

• A quiet revolution and potential build-up
– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until last year, programmed through graphics API

– GPU in every PC and workstation – massive volume and
potential impact

G
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

Why Massively Parallel Processor

L1: Introduction
23

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL1, University of Illinois, Urbana-Champaign

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768
MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

GeForce 8800

L1: Introduction
25

Concept of GPGPU
(General-Purpose Computing on GPUs)

• Idea:
• Potential for very high performance at low cost
• Architecture well suited for certain kinds of parallel

applications (data parallel)
• Demonstrations of 30-100X speedup over CPU

• Early challenges:
– Architectures very customized to graphics problems

(e.g., vertex and fragment processors)
– Programmed using graphics-specific programming

models or libraries
• Recent trends:

– Some convergence between commodity and GPUs and
their associated parallel programming models

L1: Introduction
26See http://gpgpu.org

Stretching Traditional
Architectures

• Traditional parallel architectures cover some
super-applications
– DSP, GPU, network apps, Scientific, Transactions

• The game is to grow mainstream architectures
“out” or domain-specific architectures “in”
– CUDA is latter

27© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

The fastest computer in the world today
• What is its name?

• Where is it located?

• How many processors does it
have?

• What kind of processors?

• How fast is it?

RoadRunner

Los Alamos National
Laboratory

~19,000 processor chips
(~129,600 “processors”)

AMD Opterons and
IBM Cell/BE (in Playstations)

1.105 Petaflop/second
One quadrilion operations/s
1 x 1016

See http://www.top500.org L1: Introduction
28

Parallel Programming Complexity
An Analogy to Preparing Thanksgiving Dinner
• Enough parallelism? (Amdahl’s Law)

– Suppose you want to just serve turkey
• Granularity

– How frequently must each assistant report to the chef
• After each stroke of a knife? Each step of a recipe? Each dish

completed?
• Locality

– Grab the spices one at a time? Or collect ones that are needed
prior to starting a dish?

– What if you have to go to the grocery store while cooking?
• Load balance

– Each assistant gets a dish? Preparing stuffing vs. cooking green
beans?

• Coordination and Synchronization
– Person chopping onions for stuffing can also supply green beans
– Start pie after turkey is out of the oven

All of these things makes parallel
programming even harder than sequential
programming.

L1: Introduction
29

Finding Enough Parallelism
• Suppose only part of an application seems parallel
• Amdahl’s law

– let s be the fraction of work done sequentially,
so (1-s) is fraction parallelizable

– P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)

<= 1/s

• Even if the parallel part speeds up perfectly,
performance is limited by the sequential part

L1: Introduction
30

s

1-s

Overhead of Parallelism
• Given enough parallel work, this is the biggest

barrier to getting desired speedup
• Parallelism overheads include:

– cost of starting a thread or process
– cost of communicating shared data
– cost of synchronizing
– extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units
of work to run fast in parallel (I.e. large
granularity), but not so large that there is not
enough parallel work

L1: Introduction
31

Locality and Parallelism

• Large memories are slow, fast memories are small
• Storage hierarchies are large and fast on average
• Algorithm should do most work on nearby data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

L1: Introduction
32

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Courtesy NVIDIA

Host + GPU
Storage
Hierarchy

Load Imbalance

• Load imbalance is the time that some processors in
the system are idle due to
– insufficient parallelism (during that phase)
– unequal size tasks

• Examples of the latter
– different control flow paths on different tasks
– adapting to “interesting parts of a domain”
– tree-structured computations
– fundamentally unstructured problems

• Algorithm needs to balance load

L1: Introduction
33

Summary of Lecture

• Technology trends have caused the multi-core
paradigm shift in computer architecture
– Every computer architecture is parallel

• Parallel programming is reaching the masses
– This course will help prepare you for the future

of programming.
• We are seeing some convergence of graphics and

general-purpose computing
• Graphics processors can achieve high performance for

more general-purpose applications
• GPGPU computing

– Heterogeneous, suitable for data-parallel applications

L1: Introduction
34

Next Time

• Immersion!
– Introduction to CUDA

L1: Introduction
35

