
Homework Assignment #2

• DUE 5PM Thursday, February 19
• Objective:

-  Establish some concepts in correctness and memory
hierarchy optimization

-  For CUDA examples, you do not need to execute the code.

• Turning in assignment:
- Use the “handin” program on the CADE machines
- Use the following command:

“handin cs6963 hw1 <hwfile>”
- The file <hwfile> should be a raw text file, or a PDF file.

CS6963

Homework Assignment #2
Problem 1: Dependence Analysis, Distance/Direction
Vectors
Consider the following loop nest:

for (j=0; j<n; j++)
 for (i=0; i<n; i++) {
 A[i][j] = A[i-1][j] + A[i+1][j-1];
 A[i-1][j+1] = A[i][j];
 }

Identify true, anti and output dependences for each
pair of references and each loop in the nest.

CS6963

Homework Assignment #2
Problem 2: Dependence Analysis, Distance/Direction Vectors
Construct all direction vectors for the following loop and indicate
the type of dependence (true, anti or output) associated with each.

for (k=0; k<100; k++)
 for (j=0; j<100; j++)
 for (i=0; i<100; i++)
 A[i+1][j][k] = A[i][j][5] + c;

Provide a CUDA kernel function and its invocation that represents
a reordering transformation that preserves the meaning of this
sequential code.

CS6963

Homework Assignment #2
Problem 3: Safety of loop reordering transformations and tiling
For the following code:

for (k=1; k<p; k++)
 for (j=1; j<m+1; j++)
 for (i=1; i<n+1; i++) {
 A[i][j][k] = A[i][j-1][k] + A[i-1][j][k];
 B[i][j][k+1] = B[i][j][k] + A[i][j][k]
 }

a)  Specify the dependences and their distances.
b)  Is it legal to interchange I and K? If yes, show the new

dependences; otherwise, show which dependences are violated.
c)  For large values of p, m and n, show how you can use tiling to

improve the memory behavior of this code. Provide CUDA code
that employs tiling for the shared memory of an SM.

CS6963

Homework Assignment #2
Problem 4: Utilizing the memory hierarchy

For the following sequential code, derive a CUDA program that
preserves the sequential program’s meaning. Assume a float
variable is 4 bytes. Sizes for different portions of the memory
hierarchy are as follows: 16KB shared memory,8KB constant cache,
256MB global memory, and use the latencies to these memories
from Lecture 6. Your CUDA code should utilize the memory
hierarchy as effectively as possible.

float result[64][64], input1[64], input2[64][64], temp[64];
for (i=0; i<64; i++) {
 temp[i] = 0.0;
 for (j=0; j<64; j++) {
 temp[i] += input2[i,j];
 result[i,j] = temp[i];
 for (k=0; k<64; k++)
 result[i,j] += input1[j] * input1[k];

CS6963

Homework Assignment #2
Extra credit: Omega calculator

For the example in problem #2, use the Omega calculator to set up
the dependence equations. What are the relations you provide to
Omega.

CS6963

