3/18/10

Outline

« What is Material Point Method and
Generalized Interpolation Material Point
Method?

GPU Acceleration of the Generalized Suitability for GPU Acceleration

Interpolation Material Point Method * Implementation Challenges
— Inverse mapping from grids to particles

Wei-Fan Chiang, Michael DeLisi, Todd Hummel, (global synchronization)
Tyler Prete, Kevin Tew, Mary Hall, Phil —1I/0 in sequential implementation

Wallstedt, and James Guilkey Experimental Results
Looking to the future:
Sponsored in part by NSF awards CSR-0615412 — Pr‘ogr‘amming TOOIS Gnd AUTO'fUning

and 0CI-0749360 and by hardware donations = —
from NVIDIA Corporation. Schiumberger u UNIVERSITY 2 Schlumberger u UNIVERSITY
OF UTAH OF UTAH

Rigid, Soft Body and Fluid Simulations The Material Point Method (MPM)

. . 1. Lagrangian material points carry all
* Breadth of GPPIICGTIOHS state data (position, velocity, stress, etc.) J o ®© .’ ./
+ fluids and smoke in games, astrophysics simulation, 2. Overlying mesh defined ® d &
oil exploration, and molecular dynamics
« MPM Part of Center for the Simulation of 8. Partice state projected (o mesh, &.9.
Vo= Sy [S, ®

Accidental Fires and Explosions (C-SAFE)

SOfTWGI"e enVlr‘onmen'I' 4. Conservation of momentum solved
on mesh giving updated mesh velocity @
and (in principal) position.

Stress at particles computed based
on gradient of the mesh velocity.

5. Particle positions/velocities updated from .f
mesh solution. ®

6. Discard deformed mesh. pu—
Compaction of a foam microstructure 8 Particle Define new mesh and repeat @

: Schiumberger | & PSINECEN s Schiumberger | & R
OF UTAH OF UTAH

3/18/10

Approach

Start with sequential library
implementation of MPM and GIMP

— And descriptions of parallel OpenMP and MPT
implementations

Profiling pinpointed key computations
(updateContriblList and advance, >99%)
Two independent implementations (2-3
person teams)

Some other aspects of mapping

— Makes heavy use of C++ templates

— Gnuplot used for visualization

s Schiumberger u UNIVERSITY
OF UTAH

Key Features of MPM and GIMP
Computation

* Large amounts of data parallelism
* Particles mapped to discretized grid

— Compute contribution of particles to grid
nodes (updateContribList)

— Compute <force, velocity, acceleration,
stress> operations on grid nodes (advance)

* Each time step, the particles are moving
— Compute stresses and recompute mapping
* Periodically, visualize or store results

s Schiumbergep UUNIVERSITY
OF UTAH

Overview of Strategy for CUDA
Implementation

Partition particle data structure and
mapping to grid across threads

Build an inverse map from grid nodes to
particles

— Requires global synchronization

Later phase partitions grid across threads
Two implementations differ in strategy for
this inverse map

— V1: Sort grid nodes after every time step

— V2: Replicate inverse map, using extra storage
to avoid hotspots in memory (focus)

Y Schiumberger u UNIVERSITY
OF UTAH

{

}

Global Synchronization for Inverse Map
(CUDA Particle Project)

index refers to index of

device__ void addParticleToCell(int3 gridPos, uint 7
particle

index, uint* gridCounters, uint* gridCells)

. gridPos represents
// calculate grid hash grid cell in 3-d space
uint gridHash = calcGridHash(gridPos);
gridCells is data structure
in global memory for the

// increment cell counter using atomics X 3
inverse mapping

int counter = atomicAdd(&gridCounters[gridHash], 1);
counter = min(counter, params.maxParticlesPerCell-1);
What this does:

Builds up gridCells as array
limited by max # particles per
grid

atomicAdd gives how many
particles have already been
added to this cell

s Schiumbergep UUNIVERSITY
OF UTAH

// write particle index into this cell (uncoalesced!)
gridCells[gridHash*params.maxParticlesPerCell +
counter] = index;

3/18/10

Optimized Version: S
Replicate gridCounters to avoid Contention Summary of Other Optimizations
Threads computing

Thread: ti i
reads computing * Global memory COOICSCmg

Inverse mapping Inverse mapping

— gridHash and gridCounters organization
) — Use of float2 and float4 data types
e — CUDA Visual Profiler pinpointed these!
* Maintain data on GPU across time steps
* Fuse multiple functions from sequential
code into single, coarser grained GPU

atomicAdd
operations

8C,0 | BCy0 | 8C,0 [l 8Cx | BCy1 | 8C.1 [BCyp | BCyp | BCyp

gridCounter, one elt per grid node replicated gridCounter ker‘nel
(global memory) (global memory)
. Rep}I‘ace divides by multiples of inverse and
cache

* Results of this optimization:
— 2x speedup on updateContribList

° Schiumberger | & PSINECEN 0 Schiumberger | & R
OF UTAH OF UTAH

Experiment Details Results on Key Computations

« Architectures 00 updateContribList 5000 advance
— Original = Intel Core2 Duo E8400 (3.00 GHz) P u Original 3 u Original
— CUDA = nVIDIA GeForce 9600 GT (8 SMs) E20000 g cypy E
U
+ Input data set € 1o g
0
[cel | GridNodes | Particles |
32 1,352 2,553 3 o % £ 64 %
64 5,356 9,177 Nuzber of Cels Number of Cell
g8 230112 19,897 * All results use 128 threads

+ Speedups of 12.5x and 6.6x, respectively,
over sequential implementation

" Schiumberger | & PSINECEN = Schiumberger | & R
OF UTAH OF UTAH

3/18/10

Overall Speedup Results

Overall
50
a5 m Original
a0 m Original, No Output
35 = CUDA

= CUDA, No Output

10

E

o —
32

64
Number of Cells

Time (s)
N
S

96

+ No output, speedup of 10.7x
+ With output, speedup only 3.3x
+ Obvious future work: Open GL for visualization

THE
- Schlumberger UUNIVERSITY
OF UTAH

Shifting Gears:
Programmability and Auto-tuning

+ Midterm extra credit question:

— "If you could invest in tool research for GPUs,
in what areas would you like to see progress?”

» Tools

— Assistance with partitioning across threads/
blocks

— Assistance with selecting numbers of threads/
blocks

— Assistance with calculating indexing relative to
thread/block partitioning

T
1“ Schlumberger u UNIVERSITY
OF UTAH

Auto-Tuning “Compiler”

Traditional view:

Compiler

i —

input data

v

(Semi-)Autotuning Compiler:

code

| —
b v =
- — -> = 0
— <
input data f
(characteristics)

e
s Schlumberger UUNIVERSITY
OF UTAH

Current Research Activity

+ Automatically generate CUDA from sequential code
and transformation script, with
CUDAize(loop, TI, TJ kernnm)

+ Advantages of auto-tuning

— Tradeoffs between large number of threads to hide
latency and smaller number to increase reuse of data in
registers

— Detect ordering sensitivities that impact coalescing,
bank conflicts,etc.

— Evaluate alternative memory hierarchy optimizations
+ Addresses challenges from earlier slide

— Correct code generation, including indexing

— Auto-tuning to select best thread/block partitioning

— Memory hierarchy optimizations and data movement

T
1 Schlumberger u UNIVERSITY
OF UTAH

3/18/10

Summary

*+ Three areas of improvement for MPM/GIMP
— Used single precision, which may not always be
sufficiently precise
— Wanted more threads but constrained by
register limits
— OpenGL visualization of results
+ Newer GPUs and straightforward extensions
ameliorate these challenges
+ Future work on programmability and auto-
tuning

v Schiumberger u UNIVERSITY
OF UTAH

