Evaluating Graph Coloring on
GPUs

Final Project for the GPU class - Spring 2010
submitted as a poster to PPoPP 2011

Pascal Grosset, Peihong Zhu, Shusen Liu,
Suresh Venkatasubramanian, and Mary Hall

Graph Coloring

« Assignment of colors to vertices of a graph such that
connected vertices have different color
o Planar graphs: 4 colors is enough
o Non-planar graphs: NP Complete s
+ Solutions:
o Brute-force
o Heuristics

« Use:

Planar Graph
o Assignment of frequencies to wireless access

points
O ..n

Non-planar graph

Existing Algorithms

» Many heuristics exist with different decision criteria
o First Fit - none
o LDO - uses degree as decision parameter
o SDO - uses saturation as decision parameter
o LDO - uses degree as decision parameter
o SDO & LDO - uses saturation and then degree

+ Trade-offs Benchmarks
o Speed:
= Fastest: First-Fit
= Slowest: SDO & LDO
o Colors
= Best: SDO & LDO
= Worst: First-Fit

Degree: number of neighbors of a vertex, Saturation: number of differently colored neighbors

Existing Parallel Solutions

» We did not find any relevant related works for graph coloring
on GPUs

* Main inspiration:
o Gebremedhin and Manne

o (G-M) algorithm for shared memory architectures
= 4 stages:
= Partitioning
= Pseudo-coloring
= Conflict detection
= Conflict Resolution

3/4/13

Proposed Framework

Adapt existing framework to GPUs

Phase 1: Graph Partitioning
o Decide how the Graph will be partitioned into subgraphs

Phase 2: Graph Coloring & Conflict Identification
o Graph coloring using one of the heuristics

= First Fit, SDO & LDO, Max In, Max Out
o Conflict Identification

Phase 3: Sequential Conflict Resolution
o To definitely remove all conflicts

Max In & Max Out

» Two new heuristics
o Decision parameter: number of vertices having neighbors
outside the subgraph

while Num_Colored < N(Number of vertices in subgraph) do
max = -1
for i =1 to N do
if lcolored(Vi) then
no = Number of neighbors outside partition
if no > max then
max = no
index = i
if no == max then
if d(Vi) > d(Vindex) then
index = i

Color Vindex
Num_Colored ++

Phase 2: Graph Coloring & Conflict Identification
Main part

Transfer data from CPU to GPU

. Graph Coloring
o Run Graph Coloring: 1 thread per subgraph
- cudaEventSynchronize -
. Conflicts Indentification
o sets color of conflicted nodes to 0: 1 thread per node
- cudaEventSynchronize -
Transfer Conflicts to CPU
Count Conflicts
o If conflicts < threshold
= exit
o Else
= Repeat from 1

Data Storage

+ Adjacency Matrix (Initial)
o Too big

+ Adjacency List
o Very compact
o Bad memory access pattern
= bad performance

« "Sort of" Adjacency List
o Size of each list: max degree
o Good balance between performance and size
= can still be optimized

3/4/13

Phase 2: Graph Coloring & Conflict Identification
Main part

» Transfer data from CPU to GPU

1. Graph Coloring

Test Data

Data source: University of Florida Sparse Matrix Collection

Name n ™ Density A& Avg Degree

Structural Engineering

52,329 1,375,396 0.00100 206 50
1 . nasasrb 54,870 1,366,097 0.00091 275 47
© RUI; Era'?g Cglor!ng' 1 thread per SUbgraph pwik 217918 5,926,171 0.00025 179 52
- cudakeventsynchronize -
H e : nasasrb Civil Engineering
2' ConﬂICtS Indentlflcatlon pkustk10 81,920 2,114,154 0.00063 89 52
o sets color of conflicted nodes to 0: 1 thread per node phusikl 1 87804 2565054 0.00067 131 55
_ cudaEventSynchronize . pkustk13 94,893 3,260,967 0.00072 299 68
» Transfer Conflicts to CPU Automotive -
. hood 220,542 5,273,947 0.00020 76 47
« Count Conflicts Idoor 958464 22.785.136 0.00005 76 46
. sdoor 417,792 9,912,536 0.00011 76 46
o If conflicts < threshold " ’
= exit Ship section
shipsecl 140,874 3,836,265 0.00039 101 54
o Else shipsecs 176860 4966618 000032 125 55
= Repeat from 1 shipsec8 114919 3269240 0.00050 101 54
BAES Linear Car Analysis
bmw3_2 227,362 5,539,634 0.00021 335 49

« Sequential Algorithms
o First-Fit
o SDO & LDO
= Implementation direct from H. Al-Omari and K. E. Sabri, “New Graph
Coloring Algorithms
= O (n"3)
= up to 1000x speedups!!!

= Optimized (our) implementation (as a red black Tree)

= O (mlog n)
= 20x - 40x speedup

n: number of vertices, m: number of edges

Some Details:

o Tests were carried out on a Tesla S1070 and Fermi GTX 480
with Caching

o Memory transfer time included in all results

o All results are the average of 10 runs

Detailed times: Graph = hood; Algo = First Fit
Memory transfer Transfer in: 20.9275 ms; Transfer out: 0.874112 ms

Pass 1 Pass 2 Pass 3
(Coloring 23.569 15.0256 2.19456
Detect 7.1281 6.6528 6.58186

(Count Time 0.003488 0.003712 0.00336

Getting boundary list: 12.2434 ms + Final CPU steps time: 1.63 ms:
Total GPU: ~96 ms vs Total CPU: ~ 100 ms

3/4/13

3/4/13

Results: Classes

Interesting pattern in test results; 3 classes identified
o Class 1:
o pkustk10, pkustk11, shipsec1, shipsec5, shipsec8, msdoor & hood
= Speedup steadily increases initially and eventually plateaus;
Coloring improves the more threads we use
= Ratio of maximum to average degree is between 1.6 and 2.5

(@ Class 1: e.g. pkustk10

w
“ P N M
.

P # L

L / - £ o

. §
* et g AT ° a

0409 4060 78U 1024008 13120) 02409 409@0) 718802 1024008 133120

Threads (Subgraph size) Threads (Subgraph Size)

Results: Classes

Class 2

pwtk, bmw3_2 and Idoor

Speedup steadily increases but then drops off at a certain point;

best coloring is found before the dip

All the graphs in this class are quite large; pwtk & bmw3_2 have similar
densities and size; there is a larger ratio of maximum to average degree
than in class 1: 3.4 for pwtk and 6.8 for bmw3_2

o

o

o

(b) Class 2: e.g. Bmw3_2

” A .
T i
) R
o
i P
| TS S 5
.
;
:

Threads (Subgraph Size) Threads (Subgraph size)

Results: Classes

Class 3
o ct20stif, nasasrb & pkustk13
= Speedup steadily increase
Best color is in the middle of range
= Ratio of maximum degree is approximately 4 times the average degree

(¢) Class 3: e.q. Nasasrb

.
ek

«
R i

Specdup

Colors

Aoty

92166

B
307218 512001 6656(9) 7680(8) 9216(6) 307218 S12011) 66s6(9) 7680(8)

Threads (subgraph size) Threads (Subgrash size)

Results: Subgraph Size

« Small subgraph size produce better speedup and colors

Pod

1

N

(b) Subgraph Size for best Speedup.
»

prastets
shipsect

phast

Subgrashsae

ok
—
st
—
hood|
Idoor
-
[svpsoct
spsecs|

—

constt
nasasio|

v 2|

Results: Subgraph Size

W st
M s00s w0
o W waxour
W minour

(©) Best Color performance per aigorithm

‘Sequental FirstFit
[Sequential SDO& LDO

Results: Tesla vs Fermi

« Obviously Fermi is faster!

@ riestrie ®500 & 100

105

P

“gigk,,

@ waxou
)

paskio
s
o

aour
aniposct
e

o

Spoetun
Spostun

W Tosasion

W FemicTxas

Results: Metis vs Non-Metis

« Naive partitioning is most of the time faster and more
efficient than using Metis
o Metis is not effective for such small partitions
o Yields unbalanced partitions at such small graph sizes
o Unbalanced is bad for GPU

» Metis was slower despite not taking into account the time for Metis
to run!

Conclusion

Set of guidelines for graph coloring
o Fastest: Parallel First Fit
= Much better colors than Sequential First Fit
= Slightly slower than Sequential First Fit
o Best Results (if you do not care about speed)
= Sequential SDO & LDO implemented as a Red-Black Tree
o Balance of Speed and Colors

= Parallel Max Out or Min Out - average of 20X speedup over sequential
SDO & LDO

Use small subgraph Sizes

Naive partitioning is good

CUDA does not only makes calculations faster but can also
be used to improve results - First Fit!

3/4/13

3/4/13

Class Poster

PPoPP Final Poster

Eyaluatin Graph Coloring on GPUS

Hal

Graph Coloring

Graph Partitioning

Graph Coloring &
Conflict Solving.

Questions?

