
3/4/13

1

Evaluating Graph Coloring on
GPUs

Pascal Grosset, Peihong Zhu, Shusen Liu,
Suresh Venkatasubramanian, and Mary Hall

Final Project for the GPU class - Spring 2010
 submitted as a poster to PPoPP 2011

Graph Coloring

•  Assignment of colors to vertices of a graph such that
connected vertices have different color
o  Planar graphs: 4 colors is enough
o  Non-planar graphs: NP Complete

•  Solutions:
o  Brute-force
o  Heuristics

•  Use:
o  Assignment of frequencies to wireless access

points
o  ...

Planar Graph

Non-planar graph

Existing Algorithms

•  Many heuristics exist with different decision criteria
o  First Fit - none
o  LDO - uses degree as decision parameter
o  SDO - uses saturation as decision parameter
o  LDO - uses degree as decision parameter
o  SDO & LDO - uses saturation and then degree

•  Trade-offs
o  Speed:

  Fastest: First-Fit
  Slowest: SDO & LDO

o  Colors
  Best: SDO & LDO
  Worst: First-Fit

Degree: number of neighbors of a vertex, Saturation: number of differently colored neighbors

Benchmarks

Existing Parallel Solutions

•  We did not find any relevant related works for graph coloring
on GPUs

•  Main inspiration:
o  Gebremedhin and Manne
o  (G-M) algorithm for shared memory architectures

 4 stages:
 Partitioning
 Pseudo-coloring
 Conflict detection
 Conflict Resolution

3/4/13

2

Proposed Framework

•  Adapt existing framework to GPUs

•  Phase 1: Graph Partitioning
o  Decide how the Graph will be partitioned into subgraphs

•  Phase 2: Graph Coloring & Conflict Identification
o  Graph coloring using one of the heuristics

 First Fit, SDO & LDO, Max In, Max Out
o  Conflict Identification

•  Phase 3: Sequential Conflict Resolution
o  To definitely remove all conflicts

Max In & Max Out

•  Two new heuristics
o  Decision parameter: number of vertices having neighbors

outside the subgraph

 while Num_Colored < N(Number of vertices in subgraph) do
 max = -1
 for i = 1 to N do
 if !colored(Vi) then
 no = Number of neighbors outside partition
 if no > max then
 max = no
 index = i
 if no == max then
 if d(Vi) > d(Vindex) then
 index = i

 Color Vindex
 Num_Colored ++

Phase 2: Graph Coloring & Conflict Identification
Main part

•  Transfer data from CPU to GPU

1. Graph Coloring
o  Run Graph Coloring: 1 thread per subgraph

- cudaEventSynchronize -
2. Conflicts Indentification

o  sets color of conflicted nodes to 0: 1 thread per node
 - cudaEventSynchronize -
•  Transfer Conflicts to CPU
•  Count Conflicts

o  If conflicts < threshold
  exit

o  Else
  Repeat from 1

Data Storage

•  Adjacency Matrix (Initial)
o  Too big

•  Adjacency List
o  Very compact
o  Bad memory access pattern

 bad performance

•  "Sort of" Adjacency List
o  Size of each list: max degree
o  Good balance between performance and size

 can still be optimized

3/4/13

3

Phase 2: Graph Coloring & Conflict Identification
Main part

•  Transfer data from CPU to GPU

1. Graph Coloring
o  Run Graph Coloring: 1 thread per subgraph

- cudaEventSynchronize -
2. Conflicts Indentification

o  sets color of conflicted nodes to 0: 1 thread per node
 - cudaEventSynchronize -
•  Transfer Conflicts to CPU
•  Count Conflicts

o  If conflicts < threshold
  exit

o  Else
  Repeat from 1

Test Data

•  Data source: University of Florida Sparse Matrix Collection

nasasrb

pwtk

Benchmarks

•  Sequential Algorithms
o  First-Fit
o  SDO & LDO

  Implementation direct from H. Al-Omari and K. E. Sabri, “New Graph
Coloring Algorithms
  O (n^3)
  up to 1000x speedups!!!

  Optimized (our) implementation (as a red black Tree)
  O (m log n)
  20x - 40x speedup

n: number of vertices, m: number of edges

Implementation

•  Some Details:
o  Tests were carried out on a Tesla S1070 and Fermi GTX 480

with Caching
o  Memory transfer time included in all results
o  All results are the average of 10 runs

•  Detailed times: Graph = hood; Algo = First Fit
Memory transfer Transfer in: 20.9275 ms; Transfer out: 0.874112 ms

Getting boundary list: 12.2434 ms + Final CPU steps time: 1.63 ms:
•  Total GPU: ~ 96 ms vs Total CPU: ~ 100 ms

Pass 1 Pass 2 Pass 3

Coloring 23.569 15.0256 2.19456

Detect 7.1281 6.6528 6.58186

Count Time 0.003488 0.003712 0.00336

3/4/13

4

Results: Classes

•  Interesting pattern in test results; 3 classes identified
o  Class 1:
o  pkustk10, pkustk11, shipsec1, shipsec5, shipsec8, msdoor & hood

  Speedup steadily increases initially and eventually plateaus;
Coloring improves the more threads we use

  Ratio of maximum to average degree is between 1.6 and 2.5

Results: Classes

•  Class 2
o  pwtk, bmw3_2 and ldoor
o  Speedup steadily increases but then drops off at a certain point;

best coloring is found before the dip
o  All the graphs in this class are quite large; pwtk & bmw3_2 have similar

densities and size; there is a larger ratio of maximum to average degree
than in class 1: 3.4 for pwtk and 6.8 for bmw3_2

Results: Classes

•  Class 3
o  ct20stif, nasasrb & pkustk13

  Speedup steadily increase
Best color is in the middle of range

  Ratio of maximum degree is approximately 4 times the average degree

Results: Subgraph Size

•  Small subgraph size produce better speedup and colors

3/4/13

5

Results: Subgraph Size Results: Tesla vs Fermi

•  Obviously Fermi is faster!

Results: Metis vs Non-Metis

•  Naive partitioning is most of the time faster and more
efficient than using Metis
o  Metis is not effective for such small partitions
o  Yields unbalanced partitions at such small graph sizes
o  Unbalanced is bad for GPU

•  Metis was slower despite not taking into account the time for Metis
to run!

Conclusion

•  Set of guidelines for graph coloring
o  Fastest: Parallel First Fit

  Much better colors than Sequential First Fit
  Slightly slower than Sequential First Fit

o  Best Results (if you do not care about speed)
  Sequential SDO & LDO implemented as a Red-Black Tree

o  Balance of Speed and Colors
  Parallel Max Out or Min Out - average of 20X speedup over sequential

SDO & LDO

•  Use small subgraph Sizes
•  Naive partitioning is good
•  CUDA does not only makes calculations faster but can also

be used to improve results - First Fit!

3/4/13

6

Class Poster PPoPP Final Poster

Questions?

