
1/28/13

1

L6: Memory Hierarchy Optimization IV,
Bandwidth Optimization

CS6235	
 1	

Administrative

•  Next assignment available
– Next three slides
– Goals of assignment:

– simple memory hierarchy management
– block-thread decomposition tradeoff

– Due Friday, Feb. 8, 5PM
– Use handin program on CADE machines

•  “handin CS6235 lab2 <probfile>”

CS6235	
 L5:	
 Memory	
 Hierarchy,	
 III	
 2	

Assignment 2: Memory Hierarchy Optimization
Due Fri day, February 8 at 5PM

Sobel edge detection:
Find the boundaries of the image
where there is significant
difference as compared to
neighboring “pixels” and replace
values to find edges

for	
 (i	
 =	
 1;	
 	
 i	
 <	
 ImageNRows	
 -­‐	
 1;	
 i++)	

	
 	
 	
 	
 for	
 (j	
 =	
 1;	
 j	
 <	
 ImageNCols	
 -­‐1;	
 j++)	
 	

	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 sum1	
 =	
 u[i-­‐1][j+1]	
 -­‐	
 u[i-­‐1][j-­‐1]	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 2	
 *	
 u[i][j+1]	
 -­‐	
 2	
 *	
 u[i][j-­‐1]	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 u[i+1][j+1]	
 -­‐	
 u[i+1][j-­‐1];	

	
 	
 	
 	
 	
 	
 	
 	
 sum2	
 =	
 u[i-­‐1][j-­‐1]	
 +	
 2	
 *	
 u[i-­‐1][j]	
 +	
 u[i-­‐1][j+1]	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐	
 u[i+1][j-­‐1]	
 -­‐	
 2	
 *	
 u[i+1][j]	
 -­‐	
 u[i+1][j+1];	

	
 	
 	
 	
 	
 	
 	
 	
 magnitude	
 =	
 	
 sum1*sum1	
 +	
 sum2*sum2;	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (magnitude	
 >	
 THRESHOLD)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 e[i][j]	
 =	
 255;	

	
 	
 	
 	
 	
 	
 	
 	
 else	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 e[i][j]	
 =	
 0;	

	
 	
 	
 	
 	
 	
 }	

I	
 	
 	

J	
 	
 	

I	
 	
 	

J	
 	
 	

sum1	
 	

only	

sum2	
 	

only	

both	

3"
L4:	
 Memory	
 Hierarchy	
 I	

CS6963	

U	
 E	

Example
Input	
 Output	

1/28/13

2

General Approach

0. Provided
 a. Input file
 b. Sample output file
 c. CPU implementation

1.  Structure
a.  Compare CPU version and GPU version output [compareInt]
b.  Time performance of two GPU versions (see 2 & 3 below) [EventRecord]

2.  GPU version 1 (partial credit if correct)
 implementation using global memory

3.  GPU version 2 (highest points to best performing versions)
 use memory hierarchy optimizations from previous, current lecture

4. Extra credit: Try two different block / thread decompositions. What happens if you use
more threads versus more blocks? What if you do more work per thread? Explain your
choices in a README file.

Handin using the following on CADE machines, where probfile includes all files

“handin	
 cs6235 lab2 <probfile>”	
 	

Overview

•  Bandwidth optimization
•  Global memory coalescing
•  Avoiding shared memory bank conflicts
•  A few words on alignment

•  Reading:
– Chapter 4, Kirk and Hwu
– Chapter 5, Kirk and Hwu
– Sections 3.2.4 (texture memory) and 5.1.2

(bandwidth optimizations) of NVIDIA CUDA
Programming Guide

CS6235	

6"

L6:	
 Memory	
 Hierarchy	
 IV	

Overview of Texture Memory
•  Recall, texture cache of read-only data
•  Special protocol for allocating and copying to GPU

–  texture<Type, Dim, ReadMode> texRef;
•  Dim: 1, 2 or 3D objects

•  Special protocol for accesses (macros)
–  tex2D(<name>,dim1,dim2);

•  In full glory can also apply functions to textures
•  Writing possible, but unsafe if followed by read in

same kernel

CS6235	
 L5:	
 Memory	
 Hierarchy,	
 3	

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindFloat);
cudaArray* cu_array;
cudaMallocArray(&cu_array, &channelDesc, width, height);
cudaMemcpyToArray(cu_array, 0, 0, h_data, size, cudaMemcpyHostToDevice);
// set texture parameters
tex.addressMode[0] = tex.addressMode[1] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModeLinear; tex.normalized = true;
cudaBindTextureToArray(tex,cu_array, channelDesc);
// execute the kernel
transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture<float, 2, cudaReadModeElementType> tex;

… = tex2D(tex,i,j);
CS6235	
 L5:	
 Memory	
 Hierarchy,	
 3	

1/28/13

3

When to use Texture (and Surface) Memory

(From 5.3 of CUDA manual) Reading device memory through
texture or surface fetching present some benefits that can make
it an advantageous alternative to reading device memory from
global or constant memory:
•  If memory reads to global or constant memory will not be

coalesced, higher bandwidth can be achieved providing that
there is locality in the texture fetches or surface reads (this is
less likely for devices of compute capability 2.x given that global
memory reads are cached on these devices);

•  Addressing calculations are performed outside the kernel by
dedicated units;

•  Packed data may be broadcast to separate variables in a single
operation;

•  8-bit and 16-bit integer input data may be optionally converted
to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0]
(see Section 3.2.4.1.1).

L5:	
 Memory	
 Hierarchy,	
 3	

Introduction to Memory System

•  Recall execution model for a multiprocessor
– Scheduling unit: A “warp” of threads is issued

at a time (32 threads in current chips)
– Execution unit: Each cycle, 8 “cores” or SPs are

executing (32 cores in a Fermi)
– Memory unit: Memory system scans a “half

warp” or 16 threads for data to be loaded; (full
warp for Fermi)

10"
L6:	
 Memory	
 Hierarchy	
 IV	

CS6235	

Global Memory Accesses

•  Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

•  Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

•  Maximizing bandwidth:
– Operate on an entire 128 byte segment for

each memory transfer

11"
L6:	
 Memory	
 Hierarchy	
 IV	

CS6235	

Understanding Global Memory Accesses
Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)

•  Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on data
type)

•  Find other active threads requesting addresses within
that segment and coalesce

•  Reduce transaction size if possible
•  Access memory and mark threads as “inactive”
•  Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!

CS6235	

12"

L6:	
 Memory	
 Hierarchy	
 IV	

1/28/13

4

Protocol for most systems (including lab6
machines) even more restrictive

•  For compute capability 1.0 and 1.1
– Threads must access the words in a

segment in sequence
– The kth thread must access the kth word
– Alignment to the beginning of a segment
becomes a very important optimization!

CS6235	

13"

L6:	
 Memory	
 Hierarchy	
 IV	

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

14"
L6:	
 Memory	
 Hierarchy	
 IV	

Consecutive
threads will
access different
rows in memory.

Each thread will
require a different
memory
operation.

Odd: But this is
the RIGHT layout
for a
conventional
multi-core!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

15"
L6:	
 Memory	
 Hierarchy	
 IV	

Each thread in a half-
warp (assuming rows
of 16 elements) will
access consecutive
memory locations.

GREAT! All accesses
are coalesced.

With just a 4x4 block,
we may need 4
separate memory
operations to load data
for a half-warp.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

How to find out compute capability

See Appendix A.1 in NVIDIA CUDA Programming Guide to look up your device.

Also, recall “deviceQuery” in SDK to learn about features of installed device.

Linux lab, most CADE machines and Tesla cluster are Compute Capability 1.2 and
1.3.

Fermi machines are 2.x.

16"
L6:	
 Memory	
 Hierarchy	
 IV	

CS6235	

1/28/13

5

Alignment

•  Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
– An aligned memory address is a multiple of

the memory segment size
– In compute 1.0 and 1.1 devices, address

accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

– In future systems, sometimes alignment
can reduce number of accesses

CS6235	

17"

L6:	
 Memory	
 Hierarchy	
 IV	

More on Alignment

•  Objects allocated statically or by
cudaMalloc begin at aligned addresses
– But still need to think about index

expressions
•  May want to align structures

struct __align__(8) { struct __align__(16) {
 float a; float a;
 float b; float b;
}; float c;
 };

CS6235	

18"

L6:	
 Memory	
 Hierarchy	
 IV	

What Can You Do to Improve Bandwidth
to Global Memory?

•  Think about spatial reuse and access
patterns across threads
– May need a different computation & data

partitioning
– May want to rearrange data in shared

memory, even if no temporal reuse
(transpose example)

– Similar issues, but much better in future
hardware generations

CS6235	

19"

L6:	
 Memory	
 Hierarchy	
 IV	

Bandwidth to Shared Memory:
Parallel Memory Accesses

•  Consider each thread accessing a
different location in shared memory

•  Bandwidth maximized if each one is able
to proceed in parallel

•  Hardware to support this
– Banked memory: each bank can support an

access on every memory cycle

CS6235	

20"

L6:	
 Memory	
 Hierarchy	
 4	

1/28/13

6

How addresses map to banks on G80

•  Each bank has a bandwidth of 32 bits
per clock cycle

•  Successive 32-bit words are assigned to
successive banks

•  G80 has 16 banks
–  So bank = address % 16
–  Same as the size of a half-warp

•  No bank conflicts between different half-
warps, only within a single half-warp

21"
L6:	
 Memory	
 Hierarchy	
 IV	

Shared memory bank conflicts

•  Shared memory is as fast as registers if there are no
bank conflicts

•  The fast case:
–  If all threads of a half-warp access different banks, there

is no bank conflict
–  If all threads of a half-warp access the identical address,

there is no bank conflict (broadcast)
•  The slow case:

–  Bank Conflict: multiple threads in the same half-warp
access the same bank

–  Must serialize the accesses
–  Cost = max # of simultaneous accesses to a single bank

22"
L6:	
 Memory	
 Hierarchy	
 IV	

Bank Addressing Examples

•  No Bank Conflicts
–  Linear addressing

stride == 1

•  No Bank Conflicts
–  Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

23"
L6:	
 Memory	
 Hierarchy	
 IV	

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

24"
L6:	
 Memory	
 Hierarchy	
 IV	

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

1/28/13

7

Putting It Together: Global Memory
Coalescing and Bank Conflicts

•  Let’s look at matrix transpose
•  Simple goal: Replace A[i][j] with A[j][i]
•  Any reuse of data?
•  Do you think shared memory might be

useful?

25"
L6:	
 Memory	
 Hierarchy	
 IV	

Matrix Transpose (from SDK)
_global__ void transpose(float *odata, float *idata, int width, int height)
{

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index_in = xIndex + width * yIndex;
 int index_out = yIndex + height * xIndex;

 for (int r=0; r < nreps; r++)
 {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS)
 {
 // read the element
 // write the transposed element to global memory
 odata[index_out+i] = idata[index_in+i*width];
 }
 }

odata	
 and	
 idata	
 in	

global	
 memory	

CS6235	

26"

L6:	
 Memory	
 Hierarchy	
 IV	

Coalesced Matrix Transpose
_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float tile[TILE_DIM][TILE_DIM];

 // read the matrix tile into shared memory
 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
 yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
 }
 __syncthreads();
 // write the transposed matrix tile to global memory
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];
 }
 }
}

odata	
 and	
 idata	
 in	

global	
 memory	

Rearrange	
 in	

shared	
 memory	

and	
 write	
 back	

efficiently	
 to	

global	
 memory	
 	

CS6235	

27"

L6:	
 Memory	
 Hierarchy	
 IV	

Coalesced Matrix Transpose
– No Shared Memory Bank Conflicts

_global__ void transpose(float *odata, float *idata, int width, int height)
{
 __shared__ float tile[TILE_DIM][TILE_DIM+1];

 // read the matrix tile into shared memory
 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
 yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
 }
 __syncthreads();
 // write the transposed matrix tile to global memory
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];
 }
 }
}

odata	
 and	
 idata	
 in	

global	
 memory	

Rearrange	
 in	

shared	
 memory	

and	
 write	
 back	

efficiently	
 to	

global	
 memory	
 	

CS6235	

28"

L6:	
 Memory	
 Hierarchy	
 IV	

1/28/13

8

Further Optimization: Partition Camping

•  A further optimization improves bank
conflicts in global memory
•  But has not proven that useful in codes with

additional computation

•  Map blocks to different parts of chips
int bid = blockIdx.x + gridDim.x*blockIdx.y;
by = bid%gridDim.y;
bx = ((bid/gridDim.y)+by)%gridDim.x;

29"
L6:	
 Memory	
 Hierarchy	
 IV	

Performance Results for Matrix
Transpose (GTX280)

SDK-prev: all optimizations other than partition camping
CHiLL: generated by our compiler
SDK-new: includes partition camping

30"
L6:	
 Memory	
 Hierarchy	
 IV	

Summary of Lecture

•  Completion of bandwidth optimizations
– Global memory coalescing
– Alignment
– Shared memory bank conflicts
– “Partitioning camping”

•  Matrix transpose example

CS6235	

31"

L6:	
 Memory	
 Hierarchy	
 IV	

