1/23/13

L5: Memory Bandwidth Optimization

Administrative

* Next assignment available

—Next three slides

—Goals of assignment:
—simple memory hierarchy management
—block-thread decomposition tradeoff

— Due Friday, Feb. 8, 5PM

— Use handin program on CADE machines
* “handin €56235 lab2 <probfile>"

cs6235 15 Memory Hirarchy, 3 cs6235 15 Memry ierarchy 1 2
Assignment 2: Memory Hierarchy Optimization
Due Fri day, February 8 at 5PM
Y Y Example
Sobel edge detection:
for (i=1; i <ImageNRows - 1; i++) Input Output

Find the boundaries of the image S ;

. . g for (j=1; j < ImageNCols -1; j++)
where there is significant (
difference as compared to
neighboring "pixels” and replace
values to find edges

sum1 = u[i-1][j+1] - uli-1][j-1]
+2 * ufilj+1] - 2 * ufi][-1]
+u[i][+1] - u[i][-1];
sum2 = ufi-1][j-1] + 2 * u[i-1][j] + u[i-1](j+1]
™ u ™ E - uli+1](-1] - 2 * ufi+1][j] - uli+ 1]+

1> 1>

magnitude = sum1*sum1 + sum2*sum2;
. if (magnitude > THRESHOLD)
elillj] = 255;
else
efillil = 0;
}

e W e

€S6963

THE
u UNIVERSITY
OF UTAH

3
L4: Memory Hierarchy |

THE
u UNIVERSITY
OF UTAH

1/23/13

General Approach

0. Provided

a. Input file
b. Sample output file
¢. CPU implementation

1 Structure
a. Compare CPU version and GPU version output [compareInt]
b. Time performance of two GPU versions (see 2 & 3 below) [EventRecord]

2. GPU version 1 (partial credit if correct)
implementation using global memory

3. GPU version 2 (highest points to best performing versions)
use memory hierarchy optimizations from previous, current lecture

4. Extra credit: Try two different block / thread decompositions. What happens if you use
more threads versus more blocks? What if you do more work per thread? Explain your
choices in a README file.

Handin using the following on CADE machines, where probfile includes all files
“handin ¢s6235 lab2 <probfile>”

THE
u UNIVERSITY
OF UTAH

Overview of Lecture

« Tiling for constant memory and
registers

* Global Memory Coalescing
* Reading:
— Chapter 5, Kirk and Hwu book

56235 L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

Review: Targets of Memory Hierarchy
Optimizations

*+ Reduce memory latency
— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion
* Maximize memory bandwidth
— Bandwidth is the amount of useful data that
can be retrieved over a time interval
* Manage overhead
— Cost of performing optimization (e.g., copying)
should be less than anticipated gain

56235 L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

Discussion (Simplified Code)

for (int i = 0; i < Width; ++i)
for (int j = O; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k]

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
sum += M[iJ[k] * NIK][j]

double b = N[k * width + jI; }
sum+=a*b; PLiI[j] = sum;
} }
P[i * Width + j] = sum;

}

L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

1/23/13

What Does this Look Like in CUDA

#define TI 32
#define TJ 32
#define TK 32

__global__ matMult(float *M, float *N, float *P) {
ii = blockIdx.y: jj = blockIdx.x:
i = threadIdx.y; j = threadIdx.x;
__shared__ Ms[TI][TK], Ns[TK][TJ]
double sum = 0;

for (int kk = 0; K < Width; kke=TK) { Tiling for shared

Ms[jIi] = M[(* TI+i)*Width+TJ*jj+j+kk]: memory
NS0 = NI(KK*TK+)*Widthe TI*jj+j 1 —
—syncthreads(); Now eliminate mods
for (int k = kk; k < kk+TK; k++) —
sum += Ms[k%TKI[i] * Ns[jIk%TK];
__synchthreads();

What Does this Look Like in CUDA

#define TI 32
#define TJ 32
dim3 dimGrid(Width/TI, Width/TJ):
dim3 dimBlock(TI,TJ);
matMult«<dimGrid,dimBlock>>>(M N P);
__global__ matMult(float *M, float *N, float *P) {
i = blockIdx.y; jj = blockIdx.x;
i = threadIdx.y; j = threadIdx.x;
double sum = 0;
for (int kk = 0; kk < Width; kk+=TK) { — Tiling for shared
Mds[I[i] = MIGi* TI+iy*Width+kk* TK+j]: memory
Nds[jILi] = NI(KK*TK+i)*Widthsj* TJ+j];

Block and thread
loops disappear

PLGi* TI+i)*Width+jj* TT+j] = sum;
L5: M

lemory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

__synchthreads():
for (int k= 0; k< TK; k++) {
sum += Mds[jI[kT* Nds[k][i];

__synchthreads():
Array accesses to global memory

}
PI(i* TI+i}*Width+jj* TJ+j] = sum; are “linearized”
10 THE

L4: Memory Hierarchy, I

Final Code (from text, p. 87)

__global__ void MatrixMulKernel (float *Md, float *Nd, float *Pd, int Width) {

1. _shared__float Mds [TILE_WIDTH] [TILE_WIDTH];

2. __shared__float Nds [TILE_WIDTH] [TILE_WIDTH];

3&4. int bx = blockldx.x; int by = blockldx.y; int tx = threadldx.x; int ty = threadldx.y;
INdentify the row and column of the Pd element to work on

58&6. intRow=by*TILE_WIDTH +ty; intCol=bx* TILE_WIDTH +tx;

7. float Pvalue = 0;

II'Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m=0; m < Width / TILE_WIDTH; ++m) {

Il Collaborative (parallel) loading of Md and Nd tiles into shared memory

9. Mds [ty] [tx] = Md [Row*Width + (m*TILE_WIDTH + tx)};

10. Nds [ty] [tx] = Nd [(m*TILE_WIDTH + ty)*Width + Col];

1. __syncthreads(); /I make sure all threads have completed copy before calculation

12. for (intk = 0; k < TILE_WIDTH; ++k) // Update Pvalue for TKxTK tiles in Mds and Nds

13. Pvalue += Mds [ty] (k] * Nds K] [t;

14. __syncthreads(); Il make sure calculation complete before copying next ile
} /' mloop

15. Pd [Row*Width + Col] = Pvalue;

L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

56235 L5: Memory Hierarchy, 3

"Tiling" for Registers
+ A similar technique can be used to map data to
registers

+ Unroll-and-jam
+ Unroll outer loops in a nest and fuse together
resulting inner loops
+ Equivalent to “strip-mine” followed by permutation
and unrolling
+ Fusion safe if relative order of memory reads and
writes is preserved
+ Scalar replacement
— May be followed by replacing array references
with scalar variables to help compiler identify
register opportunities

THE
NIVERSITY
F UTAH

1/23/13

Unroll and Jam:
Matrix Multiply Code Example

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
sum += M[iI[k] * NLKI[j]:
}
PLLiT = sum;

for (int i = 0; i < Width; ++i)

for (int j = 0: j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {

sum += M[i1[k]* N[KI[j%

}
P[i][j] = sum;

}

L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

Unroll J Loop and Fuse K Loop Copies

for (int i = 0; i < Width; i++)
for (int j = 0: j < Width; j+=2) {
double sum1 = sum2 = 0;
for (int k = 0; k < Width; k++) {
suml += M[iJ[k] * N[KI[j1:
sum2 += M[i[k] * N[K][j+1];

}
P[i][j] = suml;
P[i][j*+1] = sum2;

}

L5: Memory Hierarchy, 3

Why is this helpful?

« Reuse MIi][k], possibly in register

« Two independent memory
streams increases instruction-
level parallelism

THE
u UNIVERSITY
OF UTAH

Unroll T and J Loops and Fuse J, K Loop
Copies

for (int i = 0; i < Width; i+=2)
for (int j = 0; j < Width; j+=2) {

Why is this helpful?
« Added reuse of N
* More independent memory

Scalar Replacement (beyond sum)

for (int i = 0; i < Width; i+=2)
for (int j = 0; j < Width; j+=2) {

Scalar Replacement
« Replace array variables with
scalar temporaries

double suml = sum2 = sum3 = sum4 = O;
for (int k = 0; k < Width; k++) {

suml += MiJk] * NIKILjL

sum2 += M[iJ[K] * N[K][j+1]

sum3 += M[i+1][k] * N[K][j1;

sum4 += M[i+1][k] * N[K][j+1];

}
P[i](j] = suml;

PLil[j+1] = sum2;
P[i+1][j] = sum3;
PLi+1][j+1] = sum4;

L5: Memory Hierarchy, 3

streams

This code is almost always fastg
than the original on ANY
architecture

More unrolling is better up to a
point where registers are
exceeded

THE
u UNIVERSITY
OF UTAH

double sum1 = sum2 = sum3 = sum4 = O;
for (int k = 0; k < Width; k++) {
tmpm1 = M[iI[K]; tmpm2 = M[i+1][K];
tmpnl = N[K][j]: tmpn2 = N[Kk][j+1];
suml += tmpml * tmpnl;
sum2 += tmpm1 * tmpn2;
sum3 += tmpm2 * tmpnl;
sum4 += tmpm2 * tmpn2;

7

P[i1[j] = suml;
PLiI[j+1] = sum2;
P[i+1][j] = sum3;
PLi+1][j+1] = sum4;

} L5: Memory Hierarchy, 3

Sometimes this helps
compilers put array
variables in registers, but
not always necessary

This code is almost always
faster than the original on
ANY architecture

More unrolling is better up to
a point where registers are
exceeded

THE
u UNIVERSITY
OF UTAH

1/23/13

Constant Memory Example

+ Signal recognition example:
— Apply input signal (a vector) to a set of
precomputed transform matrices
— Compute M;V, MV, .., M,V

__constant__ float d_signalVector[M];
__device__float R[N][M];

__global__ void ApplySignal (float * d_mat,
int M) {
float result = 0.0; /* register */

__host__ void outerApplySignal () {
float *h_inputSignal;
dim3 dimGrid(N);
dim3 dimBlock(M);
cudaMemcpyToSymbol (d_signalVector,
h_inputSignal, M*sizeof(float));
// input matrix is in d_mat
ApplySignal<<<dimGrid,dimBlock>>>
(d_mat, M);

} e
56235 L5: Memory Hierarchy, 3 UUNIVERS[TY
OF UTAH

for (j=0; j<M; j++)
result += d_mat([blockldx.x][threadldx.x][j] *
d_signalVector([jl;
R[blockldx.x][threadldx.x] = result;

+ Example from previous slide

CS6235

More on Constant Cache

— All threads in a block accessing same
element of signal vector

— Brought into cache for first access, then
latency equivalent to a register access

tucien LD signalVector([j]

Unit

Constant Cache

L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

Additional Detail

+ Suppose each thread accesses different
data from constant memory on same
instruction
—Reuse across threads?

« Consider capacity of constant cache and locality

« Code transformation needed? -- tile for
constant memory, constant cache

* Cache latency proportional to number of
accesses in a warp
—No reuse?
+ Should not be in constant memory

56235 L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

CS6235

Overview of Texture Memory

Recall, texture cache of read-only data
Special protocol for allocating and copying to GPU
— texture<Type, Dim, ReadMode> texRef;
+ Dim: 1, 2 or 3D objects
Special protocol for accesses (macros)
— tex2D(<name>,dim1,dim2);
In full glory can also apply functions to textures

Wereiting possible, but unsafe if followed by read in
same kernel

L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

1/23/13

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size):

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,
cudaChannelFormatKindFloat);

cudaArray* cu_array;

cudaMallocArray(&cu_array, &channelDesc, width, height):

cudaMemcpy ToArray(cu_array, O, 0, h_data, size, cudaMemcpyHostToDevice);

// set texture parameters

tex.addr \ode[0] = tex.addr de[1] = cudaAddressModeWrap;

tex filterMode = cudaFilterModeLinear; tex.normalized = true;

cudaBindTextureToArray(tex,cu_array, channelDesc);

// execute the kernel

transformKernel«« dimGrid, dimBlock, O »»>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture«float, 2, cudaReadModeElement Type> tex;

.. = tex2D(tex,i,j);
56235 L5: Memory Hierarchy, 3

THE
u UNIVERSITY
OF UTAH

When to use Texture (and Surface) Memory

(From 5.3 of CUDA manual) Reading device memory through
texture or surface fetching present some benefits that can make
it an advantageous alternative to reading device memory from
global or constant memory:

+ If memory reads to global or constant memory will not be
coalesced, higher bandwidth can be achieved providing that
there is locality in the texture fetches or surface reads (this is
less likely for devices of compute capability 2.x given that global
memory reads are cached on these devices);

* Addressing calculations are performed outside the kernel by
dedicated units;

+ Packed data may be broadcast to separate variables in a single
operation;

+ 8-bit and 16-bit integer input data may be optionally converted
to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0]

(see Section 3.2.4.1.1).
U{E{IEIIVERSITY
OF UTAH

L5: Memory Hierarchy, 3

Memory Bandwidth Optimization

+ Goal is to maximize utility of data for each data
transfer from global memory
+ Memory system will “coalesce” accesses for a
collection of consecutive threads if they are within an
aligned 128 byte portion of memory (from half-warp
or warp)
+ Implications for programming:
— Desirable to have consecutive threads in tx
dimension accessing consecutive data in memory
— Significant performance impact, but Fermi data
cache makes it slightly less important

THE
L5: Memory Hierarchy, Il 23 u UNIVERSITY
OF UTAH

Introduction to Global Memory Bandwidth:
Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

+ Start with memory request by smallest humbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

» Find other active threads requesting addresses
within that segment and coalesce

+ Reduce transaction size if possible
+ Access memory and mark threads as “inactive”
* Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms
THE
UUNIVERSITY
OF UTAH

24
2 L5: M Hi hy, Il
cs6235 L5 Memory Hierarchy Il

1/23/13

Protocol for most systems (including lab6é
machines) even more restrictive

* For compute capability 1.0 and 1.1

— Threads must access the words in a
segment in sequence

— The kth thread must access the kth word

56235 L5: Memory Hierarchy, Iil 25 U{JHIEHVERS[TY
OF UTAH

Memory Layout of a Matrix in C
Access n!

direction in My, Miy My Mys
Kernel
code M;z My, My, Mg,
M\.3 MLS MZ“S MSL‘»
Time Period 1 Time Period 2

T, T, Ty T T, T, T3 Ty

ARRANAN
] s

o1 Miy My,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 26
ECE 498AL, University of llinois, Urbana-Champaign L5 Memory Hierarchy Il

Memory Layout of a Matrix in C

Access Tl T T
direction in Moy My s My Mgy
Kernel

code Moz My, Myp M,

M0.3 M1.3 MZ‘S M’i‘ﬁ
Time Period 2
T, T. T T,

Tifne Period 1
T1 T2 T3 T4

1 Mig Mgy Mgy Moz, My, M, M,

Moz My Mys

THE
u UNIVERSITY
OF UTAH

27

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
/ L5: Memory Hierarchy il

ECE 498AL, University of llinois, Urbana-Champaign

Coalescing in Matrix Multiply

__global__ void MatrixMulKernel (float *Md, float *Nd, float *Pd, int Width) {

1. _shared__float Mds [TILE_WIDTH] [TILE_WIDTH];

2. __shared__float Nds [TILE_WIDTH] [TILE_WIDTH];

3&4. int bx = blockldx.x; int by = blockldx.y; int tx = threadldx.x; int ty = threadldx.y;
INdentify the row and column of the Pd element to work on

58&6. intRow=by* TILE_WIDTH +ty; intCol=bx * TILE_ZWIDTH + tx;

7. float Pvalue = 0;
1I'Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m=0; m < Width / TILE_WIDTH; ++m) {
I/ Collaborative (parallel) loading of Md and Nd tiles into shared me"B%ALESCED _Seetx
9. Mds [ty (ix] = Md [Row*Width + (m*TILE_WIDTH + &]: ~ Thig one required a transpose
10. Nds [ty] [t = Nd [(m*TILE_WIDTH + ty)*Width + Coll, COALESCED — See Col
1. __syncthreads();
12. for (intk = 0; k < TILE_WIDTH; ++k)
13 Pvalue += Mds [ty] [k] * Nds [K] [tx];
14. __syncthreads();
} /' mloop

15. Pd [Row*Width + Col] = Pvalue; C— COALESCED - See Col

L5: Memory Hierarchy, 3

Summary of Lecture

+ How to place data in constant memory

and registers

* Introduction to Bandwidth Optimization

— Global Memory Coalescing

56235 L5: Memory Hierarchy, 3

THE
U UNIVERSITY
OF UTAH

1/23/13

