
3/27/13 

1 

CS6235 

L15: Design Review, 
Midterm Review and 6-

Function MPI 

L15: DRs and Review  
2 CS6235 

Administrative 
• Design Review April 1 
• Midterm April 3, in class 
• Organick Lectures this week: 

-  Peter Neumann, SRI International 
-  Known for his work on Multics in the 1960s 

-  "A Personal History of Layered Trustworthiness” Tue Mar 
26 @ 7:00 PM, 220 Skaggs Biology 

-  "Clean-Slate Formally Motivated Hardware and Software 
for HighlyTrustworthy Systems” Wed Mar 27 @ 3:20 PM 

-  Roundtable, Wed Mar 27 @ 1:30. WEB 1248 

L15: DRs and Review  
3 CS6235 

Design Reviews 
• Goal is to see a solid plan for each project and make 

sure projects are on track 
-  Plan to evolve project so that results guaranteed 
- Show at least one thing is working 
- How work is being divided among team members 

• Major suggestions from proposals 
-  Project complexity – break it down into smaller chunks with 

evolutionary strategy 
- Add references – what has been done before?  Known 

algorithm? GPU implementation? 

L15: DRs and Review  
4 CS6235 

Design Reviews 
• Oral, 10-minute Q&A session (April 1 in class, plus office 

hours if needed) 
-  Each team member presents one part 
- Team should identify “lead” to present plan 

• Three major parts: 
I.  Overview 
- Define computation and high-level mapping to GPU 
II.  Project Plan 
-  The pieces and who is doing what. 
-  What is done so far? (Make sure something is working by 

the design review) 
III. Related Work 
-  Prior sequential or parallel algorithms/implementations 
-  Prior GPU implementations (or similar computations) 

• Submit slides and written document revising proposal that 
covers these and cleans up anything missing from proposal. 



3/27/13 

2 

L15: DRs and Review  
5 CS6235 

Design Review 
Title Team 

Overview 

Project Plan 

Related Work 

Implementation Status 

Visual interest 

Oral Presentation 

L15: DRs and Review  
6 CS6235 

Final Project Presentation 
• Dry run on April 22 

-  Easels, tape and poster board provided 
- Tape a set of Powerpoint slides to a standard 2’x3’ poster, 

or bring your own poster. 

• Poster session during class on April 24 
-  Invite your friends, profs who helped you, etc. 

• Final Report on Projects due May 1 
- Submit code 
- And written document, roughly 10 pages, based on earlier 

submission. 
-  In addition to original proposal, include 

-  Project Plan and How Decomposed (from DR) 
- Description of CUDA implementation  
-  Performance Measurement 
- Related Work (from DR) 

L15: DRs and Review  
7 CS6235 

Let’s Talk about Demos 
• For some of you, with very visual projects, I 

encourage you to think about demos for the poster 
session 

• This is not a requirement, just something that would 
enhance the poster session 

• Realistic? 
-  I know everyone’s laptops are slow … 
- … and don’t have enough memory to solve very large 

problems 

• Creative Suggestions? 
- Movies captured from run on larger system 

L15: DRs and Review  
8 CS6235 

Message Passing and MPI 
• Message passing is the principle alternative to shared memory 

parallel programming, predominant programming model for 
supercomputers and clusters 

-  Portable 
-  Low-level, but universal and matches earlier hardware execution 

model 

• What it is 
- A library used within conventional sequential languagess (Fortran, 

C, C++) 
-  Based on Single Program, Multiple Data (SPMD)  
-  Isolation of separate address spaces 

+ no data races, but communication errors possible 
+ exposes execution model and forces programmer to think about 

locality, both good for performance 
-  Complexity and code growth! 

Like OpenMP, MPI arose as a standard to replace a large number of 
proprietary message passing libraries. 



3/27/13 

3 

L15: DRs and Review  
9 CS6235 

Message Passing Library Features 
• All communication, synchronization require subroutine calls 

- No shared variables 
-  Program runs on a single processor just like any uniprocessor 

program, except for calls to message passing library 

• Subroutines for 
-  Communication  

-  Pairwise or point-to-point: A message is sent from a specific sending 
process (point a) to a specific receiving process (point b). 

-  Collectives involving multiple processors 
–  Move data: Broadcast, Scatter/gather 
–  Compute and move: Reduce, AllReduce 

- Synchronization  
- Barrier 
- No locks because there are no shared variables to protect 

- Queries 
- How many processes? Which one am I? Any messages waiting? 

L15: DRs and Review  
10 CS6235 

MPI References 
• The Standard itself: 

- at http://www.mpi-forum.org 
- All MPI official releases, in both postscript and 

HTML 

• Other information on Web: 
- at http://www.mcs.anl.gov/mpi 
- pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

Slide source: Bill Gropp 

L15: DRs and Review  
11 CS6235 

Compilation 

Copyright © 2010, Elsevier Inc. All rights Reserved 

mpicc  -g  -Wall  -o  mpi_hello  mpi_hello.c 

wrapper script to compile 

turns on all warnings 

source file 

create this executable file name 
(as opposed to default a.out) 

produce 
debugging  
information 

L15: DRs and Review  
12 CS6235 

Execution 

mpiexec  -n  <number of processes>   <executable> 

mpiexec  -n  1  ./mpi_hello 

mpiexec  -n  4  ./mpi_hello 

run with 1 process 

run with 4 processes 
Copyright © 2010, Elsevier Inc. All rights Reserved 



3/27/13 

4 

L15: DRs and Review  
13 CS6235 

Hello (C) 
#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( ”Greetings from process %d of 

     %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 

Slide source: Bill Gropp 11/03/2011 13"CS4961 L15: DRs and Review  
14 CS6235 

Hello (C++) 

#include "mpi.h" 

#include <iostream> 

int main( int argc, char *argv[] ) 

{ 

    int rank, size; 

    MPI::Init(argc, argv); 

    rank = MPI::COMM_WORLD.Get_rank(); 

    size = MPI::COMM_WORLD.Get_size(); 

    std::cout << ”Greetings from process " << rank << " 
  of " << size << "\n"; 

    MPI::Finalize(); 

    return 0; 

} 
Slide source: Bill Gropp, 11/03/2011 14"CS4961 

L15: DRs and Review  
15 CS6235 

Execution 

mpiexec  -n  1  ./mpi_hello 

mpiexec  -n  4  ./mpi_hello 

Greetings from process 0 of 1 ! 

Greetings from process 0 of 4 ! 
Greetings from process 1 of 4 ! 
Greetings from process 2 of 4 ! 
Greetings from process 3 of 4 ! 

Copyright © 2010, Elsevier Inc. All rights Reserved 

L15: DRs and Review  
16 CS6235 

MPI Components 
• MPI_Init 

- Tells MPI to do all the necessary setup. 

• MPI_Finalize 
- Tells MPI we’re done, so clean up anything allocated for this 

program. 

Copyright © 2010, Elsevier Inc. All rights Reserved 



3/27/13 

5 

L15: DRs and Review  
17 CS6235 

Basic Outline 

Copyright © 2010, Elsevier Inc. All rights Reserved 

L15: DRs and Review  
18 CS6235 

MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, comm) 
• The message buffer is described by (start, count, 
datatype). 

• The target process is specified by dest, which is the 
rank of the target process in the communicator specified 
by comm. 

• When this function returns, the data has been delivered 
to the system and the buffer can be reused.  The 
message may not have been received by the target 
process. 

Slide source: Bill Gropp 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 

L15: DRs and Review  
19 CS6235 

MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, comm, status) 
• Waits until a matching (both source and tag) message is 

received from the system, and the buffer can be used 
• source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE 

• tag is a tag to be matched on or MPI_ANY_TAG 
• receiving fewer than count occurrences of datatype is OK, 

but receiving more is an error 
• status contains further information (e.g. size of message) 

Slide source: Bill Gropp 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 

L15: DRs and Review  
20 CS6235 

MPI Datatypes 
• The data in a message to send or receive is 
described by a triple (address, count, 
datatype), where 

• An MPI datatype is recursively defined as: 
- predefined, corresponding to a data type from 

the language (e.g., MPI_INT, MPI_DOUBLE) 
- a contiguous array of MPI datatypes 
- a strided block of datatypes 
- an indexed array of blocks of datatypes 
- an arbitrary structure of datatypes 

• There are MPI functions to construct custom 
datatypes, in particular ones for subarrays 

Slide source: Bill Gropp 



3/27/13 

6 

L15: DRs and Review  
21 CS6235 

A Simple MPI Program 

#include “mpi.h” 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } 
  else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
              &status ); 
    printf( “Received %d\n”, buf ); 
  } 

  MPI_Finalize(); 
  return 0; 
} 

Slide source: Bill Gropp L15: DRs and Review  
22 CS6235 

Six-Function MPI 
• Most commonly used constructs 
• A decade or more ago, almost all supercomputer 

programs only used these 
- MPI_Init 
- MPI_Finalize 
- MPI_Comm_Size 
- MPI_Comm_Rank 
- MPI_Send 
- MPI_Recv 

• Also very useful 
•  MPI_Reduce and other collectives 

• Other features of MPI 
- Task parallel constructs 
- Optimized communication: non-blocking, one-sided 

L15: DRs and Review  
23 CS6235 

MPI_Reduce 

Copyright © 2010, Elsevier Inc. All rights Reserved 
L15: DRs and Review  

24 CS6235 

Questions from Previous Exams 
Short answer questions from last year: 
• Describe one mechanism we discussed for eliminating 

shared memory bank conflicts in code that exhibits 
these bank conflicts.  Since the occurrence of bank 
conflicts depends on the data access patterns, please 
explain any assumptions you are making about the 
original code with bank conflicts. 

•   Give one example of a synchronization mechanism 
that is control-based, meaning it controls thread 
execution, and one that is memory-based, meaning 
that it protects race conditions on memory locations. 

• What happens if two blocks assigned to the same 
streaming multiprocessor each use more than half of 
either registers or shared memory?  How does this 
affect scheduling of warps?  By comparison, what if 
the total register and shared memory usage fits 
within the capacity of these resources? 



3/27/13 

7 

L15: DRs and Review  
25 CS6235 

Questions from Previous Exams 
Short answer questions from 2011:  
• Describe how you can exploit spatial reuse in 

optimizing for memory bandwidth on a GPU.  (Partial 
credit: what are the memory bandwidth optimizations 
we studied?) 

• Given examples we have seen of control flow in GPU 
kernels, describe ONE way to reduce divergent 
branches for ONE of the following: consider tree-
structured reductions, even-odd computations, or 
boundary conditions. 

• What happens if two threads assigned to different 
blocks write to the same memory location in global 
memory? 

L15: DRs and Review  
26 CS6235 

Questions from Previous Exams 
Short answer questions from 2009 and 2010:  
• Select ONE of the following aspects of the NVIDIA 

architecture warp execution and describe briefly (in 
a couple sentences) how it works:  

-  selecting a warp to be scheduled for execution; 
-  executing a branch operation in a warp; 
-  scheduling global memory accesses for a warp; 
-  allocating registers to a thread. 

• List a specific constraint on either parallelism 
(threads, blocks, dimensionality of each) or memory 
capacity (for one specific part of the GPU memory 
hierarchy), and in one sentence, describe how this 
impacts your GPU program as compared to a 
sequential CPU program. 

L15: DRs and Review  
27 CS6235 

• Problem Solving: Data placement in the memory hierarchy 
Given the following CUDA code, for each data structure in the thread 

program, what is the most appropriate portion of the memory 
hierarchy to place that data (constant, global, shared, or registers) 
and why.  Feel free to give multiple answers for some data in cases 
where there are multiple possibilities that are all appropriate.  In 
each case, explain how you would modify the CUDA code to use that 
level of the memory hierarchy. 

#define N 512 
float a[N], b[N], c[N][N], d[N]; 
int   e[N];  
__global compute(float *a, float *b, float *c, float *d, int *e) { 
float temp; 
int index = blockIdx.x*blockDim.x + threadIdx.x 

for (j =0; j<N; j++) { 
    temp = (c[index][j] + b[j])*d[e[index]]; 
    a[index] = a[index] – temp; 
  }  
} 

Questions from Previous Exams 

L15: DRs and Review  
28 CS6235 

•  Given the following CUDA code, add synchronization to derive a 
correct implementation that has no race conditions.  (Hint: You 
should be able to simply insert __synchthreads() calls.) 

__global__ compute (float *a, float *b, int BLOCKSIZE) { 
     __shared__ s_a[128], s_b[128]; 
     /* copy portion of input data into shared memory */ 
     s_a[threadIdx.x] = a[blockIdx.x*BLOCKSIZE + threadIdx.x]; 

     /* Time step loop */ 
      for (int t = 0; t<MAX_TIME; t++) { 
            int boundary = min((blockIdx.x+1)*BLOCKSIZE-1, 
                                                   blockDim.x*BLOCKSIZE-1,threadIdx+2); 
           /* alternate inputs and outputs on even/odd time steps */ 
           if (t % 2 == 0) {  
               s_b[threadIdx.x] = s_a[threadIdx.x] + s_a[boundary]; 
           } 
           else /* (t%2 == 1) */ { 
               s_a[threadIdx.x] = s_b[threadIdx.x] + s_b[boundary];  
         } 
   } 
/* Result is in s_b, and must be copied to b */ 
b[blockIdx.x*BLOCKSIZE + threadIdx.x] = s_b[threadIdx.x]; 
} 

Questions from Previous Exams 



3/27/13 

8 

L15: DRs and Review  
29 CS6235 

• Without writing out the CUDA code, consider a CUDA 
mapping of the LU Decomposition sequential code 
below.  Answer should be in three parts, providing 
opportunities for partial credit: (i) where are the 
data dependences in this computation? (ii) how would 
you partition the computation across threads and 
blocks? (iii) how would you add synchronization to 
avoid race conditions? 

float a[1024][1024]; 
for (k=0; j<1023; k++) { 
    for (i=k+1; i<1024; i++) 
         a[i][k] = a[i][k] / a[k][k]; 
    for (i=k+1; i<1024; i++) 
         for (j=k+1; j<1024; j++) 
               a[i][j] = a[i][j] – a[i][k]*a[k][j]; 
} 

L15: DRs and Review  
30 CS6235 

•  Given a sparse matrix-vector multiplication, consider two different 
GPU implementations: (a) one in which the sparse matrix is stored in 
compressed sparse row format (see below code); and, (b) one which 
uses an ELL format for the sparse matrix because the upper limit on 
number of nonzeros per row is fixed.  For (a), describe the mapping 
of this code to GPUs.  How is it decomposed into threads, and where 
are t, data, indices and x placed in the memory hierarchy?  For (b), 
how does the ELL representation affect your solution?  Would you 
consider a different thread decomposition and data placement? 

// Sequential sparse matrix vector multiplication using compressed sparse row  
// CSR) representation of sparse matrix.  “data” holds the nonzeros in the 

sparse  
// matrix 

for (j=0; j<nr; j++) {                                                       
    for (k = ptr[j]; k<ptr[j+1]-1; k++)  
      t[j] = t[j] + data[k] * x[indices[k]]; 

L15: DRs and Review  
31 CS6235 

Example essay questions: 
Describe the features of computations that are likely 

to obtain high speedup on a GPU as compared to a 
sequential CPU.  

Consider the architecture of the current GPUs and 
impact on programmability.  If you could change one 
aspect of the architecture to simplify programming, 
what would it be and why?  (You don’t have to propose 
an alternative architecture.) 

We talked about sparse matrix computations with 
respect to linear algebra, graph coloring and program 
analysis.    Describe a sparse matrix representation 
that is appropriate for a GPU implementation of one 
of these applications and explain why it is well suited. 

Describe three optimizations that were performed for 
the MRI application case study.   

•    

Questions from Previous Exams 


