
3/18/13

1

Optimizing Stencil
Computations

March 18, 2013

Administrative
Midterm coming

April 3?
In class March 25, can bring one page of notes
Review notes, readings and review lecture
Prior exams are posted

Design Review
Intermediate assessment of progress on project, oral and short
In class on April 1

Final projects
Poster session, April 24 (dry run April 22)
Final report, May 1

Stencil Computations
A stencil defines the value of a grid point in a d-dimensional
spatial grid at time t as a function of neighboring grid points at
recent times before t.

07/20/11	

Stencil Computations,
Performance Issues

•  Bytes per flop ratio is O(1)
•  Most machines cannot supply data at this rate, leading to
memory bound computation
•  Some reuse, but difficult to exploit fully, and interacts with
parallelization

How to maximize performance:
•  Avoid extraneous memory traffic, such as cache capacity/
conflict misses
•  Bandwidth optimizations to maximize utility of memory
transfers
•  Maximize in-core performance

3/18/13

2

07/20/11	

Learn More: StencilProbe

•  See http://people.csail.mit.edu/skamil/projects/stencilprobe/
•  Several variations of Heat Equation, to be discussed
•  Can instantiate to measure performance impact

07/20/11	

Example: Heat Equation
for (t=0; t<timesteps; t++) { // time step loop
 for (k=1; k<nz-1; k++) {
 for (j=1; j<ny-1; j++) {
 for (i=1; i<nx-1; i++) {
 // 3-d 7-point stencil

 B[i][j][k] = A[i][j][k+1] + A[i][j][k-1] +
 A[i][j+1][k] + A[i][j-1][k] + A[i+1][j][k] +

 A[i-1][j][k] – 6.0 * A[i][j][k] / (fac*fac);
 }
 }
 }
 temp_ptr = A;
 A = B;
 B = temp_ptr;
 }

What if nx,
ny, nz large?

07/20/11	

Heat Equation, Add Tiling
for (t=0; t<timesteps; t++) { // time step loop
 for (jj = 1; jj < ny-1; jj+=TJ) {
 for (ii = 1; ii < nx - 1; ii+=TI) {
 for (k=1; k<nz-1; k++) {
 for (j = jj; j < MIN(jj+TJ,ny - 1); j++) {

 for (i = ii; i < MIN(ii+TI,nx - 1); i++) {
 // 3-d 7-point stencil

 B[i][j][k] = A[i][j][k+1] + A[i][j][k-1] +
 A[i][j+1][k] + A[i][j-1][k] + A[i+1][j][k] +

 A[i-1][j][k] – 6.0 * A[i][j][k] / (fac*fac);
 }
 }
 }
 temp_ptr = A;
 A = B;
 B = temp_ptr;
 }

Note the reuse
across time steps!

07/20/11	

for (kk=1; kk < nz-1; kk+=tz) {
 for (jj = 1; jj < ny-1; jj+=ty) {
 for (ii = 1; ii < nx - 1; ii+=tx) {
 for (t=0; t<timesteps; t++) { // time step loop
 … calculate bounds from t and slope …
 for (k=blockMin_z; k < blockMax_z; k++) {

 for (j=blockMin_y; j < blockMax_y; j++) {
 for (i=blockMin_x; i < blockMax_x; i++) {

 // 3-d 7-point stencil
 B[i][j][k] = A[i][j][k+1] + A[i][j][k-1] +
 A[i][j+1][k] + A[i][j-1][k] + A[i+1][j][k] +

 A[i-1][j][k] – 6.0 * A[i][j][k] / (fac*fac);
 }
 }
 }
 temp_ptr = A;
 A = B;
 B = temp_ptr;
 }

Heat Equation, Time Skewing

3/18/13

3

07/20/11	

Heat Equation, Circular Queue

•  See probe_heat_circqueue.c

07/20/11	

Heat Equation, Cache Oblivious
•  See probe_heat_oblivious.c
•  Idea: Recursive decomposition to cutoff point
•  Implicit tiling: in both space and time
•  Simpler code than complex tiling, but introduces overhead
•  Encapsulated in Pochoir DSL (next slide)

Space cut

Time cut

Example Pochoir Stencil Compiler
Specification

Parallel Stencils in Pochoir

3/18/13

4

General Approach to Parallel
Stencils

•  Always safe to parallelize within a time step
•  Circular queue and time skewing encapsulate “tiles” that
are independent

07/20/11	

Results for Heat Equation

Reference: K. Datta et al., "Stencil Computation Optimization and Autotuning on
State‐of‐the‐Art Multi-core Architectures”, SC08.

What about GPUs?
•  Two recent papers:
“Auto-Generation and Auto-Tuning of 3D Stencil Codes on GPU
Clusters,” Zhang and Mueller, CGO 2012.
“High-Performance Code Generation for Stencil Computations on
GPU Architectures,” Holewinski et al., ICS 2012.

•  Key issues:
— Exploit reuse in shared memory.
— Avoid fetching from global memory.
— Thread decomposition to support global memory coalescing.

Overlapped Tiling for Halo
Regions (or Ghost Zones)

•  Input data exceeds output result (as in Sobel)
•  Halo region or ghost zone extends the per-thread data
decomposition to encompass additional input
•  An (n+2)x(n+2) halo region is needed to compute an nxn block if
subscript expressions are of the form ± 1, for example
•  By expanding the halo region, we can trade off redundant
computation for reduced accesses to global memory when
parallelizing across time steps.

Computed region

Halo region

Extra

Redundant computation

2-d 5-point stencil example

3/18/13

5

2.5D Decomposition
•  Partition such that each thread block sweeps over the z-
axis and processes one plane at a time.

07/20/11	

Resulting Code

Other Optimizations
•  X dimension delivers coalesced global memory accesses

•  Pad to multiples of 32 stencil elements
•  Halo regions are aligned to 128-bit boundaries
•  Input (parameter) arrays are padded to match halo region, to
share indexing.
•  BlockSize.x is maximized to avoid non-coalesced accesses
to halo region
•  Blocks are square to reduce area of redundancy.
•  Use of shared memory for input.
•  Use of texture fetch for input.

Performance Across Stencils
and Architectures

3/18/13

6

GPU Cluster Performance

