CS6963: Parallel Programming for GPUs
Midterm Exam
April 5,2010

Instructions:

This is an in-class, open-note exam. Please use the paper provided to submit your
responses. You can include additional paper if needed. The goal of the exam is to
reinforce your understanding of issues we have studied in class.



CS6963: Parallel Programming for GPUs
Midterm Exam
March 25, 2009

I. Definitions (16 points)
Provide a very brief definition of the following terms:

a. Parallel programming model
b. Data reuse

C. Atomic operation

d. Memory access coalescing

e. Race condition

f. SPMD

g. Barrier synchronization

h. Hardware execution model

I1. SIMT Execution of a warp (4 points)
Select ONE of the following aspects of the NVIDIA architecture warp execution and
describe briefly (in a couple sentences) how it works:

(a) selecting a warp to be scheduled for execution;

(b) executing a branch operation in a warp;

(c) scheduling global memory accesses for a warp;

(d) allocating registers to a thread.

I11. Problem Solving (80 points)

In this set of four questions, you will be asked to provide code solutions to solve
particular problems. This portion of the exam may take too much time if you write
out the CUDA solution in detail. I will accept responses that sketch the solution,
without necessarily writing out the code or worrying about correct syntax. Just be
sure you have conveyed the intent and issues you are addressing in your solution.



a. Managing memory bandwidth

Given the following CUDA code, how would you rewrite to improve bandwidth to
global memory and, if applicable, shared memory? Explain your answer for partial
credit. Assume c is stored in row-major order, so c[i][j] is adjacent to c[i][j+1].

N =512,
NUMBLOCKS = 512/64;

float a[512], b[512], c[512][512];

__global compute(float a, float *b, float *c) {
int tx = threadldx.x;
int bx = blockldx.x;

for (j = bx*64; j< bx+64; j++)
} a[tx] = a[tx] - c[tx][j] * b[j];



b. Divergent Branch

Given the following CUDA code, describe how you would modify this to derive an
optimized version that will have fewer divergent branches.

The functions starting_kernel and default_kernel compute b from a in different ways.
(Note: ‘%’ here is the standard C mod operator, so the conditional is testing whether
the threadldx.x is divisible by 16).

Main() {
float h_a[1024], h_b[1024];

/* assume appropriate cudaMalloc called to create d_a and d_b, and d_a is */
/* initialized from h_a using appropriate call to cudaMemcpy */

dim3 dimblock(256);

dim3 dimgrid(4);

compute<<<dimgrid, dimblock,0>>>(d_a,d_b);

/* assume d_b is copied back from the device using call to cudaMemcpy */

}

__global__ compute (float *a, float *b) {
float a[4][256], b[4][256];
int tx = threadldx.x;
if (tx % 16 ==0)

(void) starting_kernel (a[bx][tx], b[bx][tx]);
else /* (tx % 16 > 0) */

(void) default_kernel (a[bx][tx], b[bx][tx]);
}



c. Tiling

The following sequential image correlation computation compares a region of an
image to a template. Show how you would tile the image and threshold data to fit in
128MB global memory and the template data to fit in a 16KB shared memory?
Explain your answer for partial credit.

TEMPLATE_NROWS = TEMPLATE_NCOLS = 64;
IMAGE_NROWS = IMAGE_NCOLS = 5192;

int image[IMAGE_NROWS][IMAGE_NCOLS], th[IMAGE_NROWS][IMAGE_NCOLS];
int template[TEMPLATE_NROWS][TEMPLATE_NCOLS];

for(m = @; m < IMAGE_NROWS - TEMPLATE_NROWS + 1; m++){
for(h = @; n < IMAGE_NCOLS - TEMPLATE_NCOLS + 1; n++){
for(i=0; i < TEMPLATE_NROWS; i++){
for(j=0; j < TEMPLATE_NCOLS; j++){
ifCabs(image[i+m][j+n] — template[i][j]) < threshold)
th[m][n]+= image[i+m][j+n]



d. Parallel partitioning and synchronization (LU Decomposition)

Without writing out the CUDA code, consider a CUDA mapping of the LU
Decomposition sequential code below. Answer should be in three parts, providing
opportunities for partial credit: (i) where are the data dependences in this
computation? (ii) how would you partition the computation across threads and
blocks? (iii) how would you add synchronization to avoid race conditions?

float a[1024][1024];

for (k=0;j<1023; k++) {
for (i=k+1; i<1024; i++)
a[i][k] = a[i][k] / a[k][k];
for (i=k+1; i<1024; i++)
for (j=k+1; j<1024; j++)
ali][j] = ali] (] - ali][k]*a[K][;];



Extra Credit: (Brief) Essay Question (10 points)
Pick one of the following four topics and write a very brief essay about it, no more
than 3 sentences.

a.

b.

Describe the features of computations that are likely to obtain high speedup
on a GPU as compared to a sequential CPU.

Explain how CUDA threads and blocks are mapped to the GPU and scheduled
for execution.

Consider the architecture of the current GPUs and impact on
programmability. If you could change one aspect of the architecture to
simplify programming, what would it be and why? (You don’t have to
propose an alternative architecture.)

Suppose you could sponsor development of a tool for GPUs --- either for
constructing programs, debugging or performance tuning --- that would
make it easier to develop GPU programs. What would it do for you that is
really hard to do now? (You don’t have to imagine how to build such a tool.)



