Assignment 2: Memory Hierarchy Optimization Due Tuesday, February 7 at 5PM

Sobel edge detection:

Find the boundaries of the image where there is significant difference as compared to neighboring "pixels" and replace values to find edges


```
for (i = 1; i < ImageNRows - 1; i++)
for (j = 1; j < ImageNCols -1; j++)
  sum1 = u[i-1][j+1] - u[i-1][j-1]
     + 2 * u[i][i+1] - 2 * u[i][i-1]
     + u[i+1][i+1] - u[i+1][i-1];
  sum2 = u[i-1][j-1] + 2 * u[i-1][j] + u[i-1][j+1]
     -u[i+1][i-1] - 2 * u[i+1][i] - u[i+1][i+1];
  magnitude = sum1*sum1 + sum2*sum2;
  if (magnitude > THRESHOLD)
    e[i][i] = 255;
   else
    e[i][i] = 0;
```


Example

Input Output

General Approach

O. Provided

- a. Input file
- b. Sample output file
- c. CPU implementation
- 1. Structure
 - a. Compare CPU version and GPU version output [compareInt]
 - b. Time performance of two GPU versions (see 2 & 3 below) [EventRecord]
- 2. GPU version 1 (partial credit if correct) implementation using global memory
- 3. GPU version 2 (highest points to best performing versions) use memory hierarchy optimizations from previous, current and Monday's lecture
- 4. Extra credit: Try two different block / thread decompositions. What happens if you use more threads versus more blocks? What if you do more work per thread? Explain your choices in a README file.

Handin using the following on CADE machines, where probfile includes all files

"handin cs6235 lab2 <probfile>"

