
2/13/12

1

L9: Project Discussion and
Floating Point Issues

CS6235	

Outline
•  Discussion of semester projects
•  Floating point

–  Mostly single precision until recent architectures
–  Accuracy
–  What’s fast and what’s not
–  Reading:

 Ch 6/7 in Kirk and Hwu,
http://courses.ece.illinois.edu/ece498/al/textbook/Chapter6-
FloatingPoint.pdf

 NVIDA CUDA Programmer’s Guide, Appendix C

CS6235	

2"

L9:	
 Projects	
 and	
 Floa8ng	
 Point	

Project Proposal (due 3/8)
•  Team of 2-3 people

•  Please let me know if you need a partner

•  Proposal Logistics:
–  Significant implementation, worth 50% of grade
–  Each person turns in the proposal (should be same

as other team members)
•  Proposal:

–  3-4 page document (11pt, single-spaced)
–  Submit with handin program:

 “handin CS6235 prop <pdf-file>”

CS6235	

Project Parts (Total = 50%)
•  Proposal (5%)

– Short written document, next few slides
•  Design Review (10%)

– Oral, in-class presentation 2 weeks before
end

•  Presentation and Poster (15%)
– Poster session last week of class, dry run

week before
•  Final Report (20%)

– Due during finals – no final for this class

2/13/12

2

Project Schedule

•  Thursday, March 8, Proposals due
•  Monday, April 2, Design Reviews
•  Wednesday, April 18, Poster Dry Run
•  Monday, April 23, In-Class Poster

Presentation
•  Wednesday, April 25, Guest Speaker

Content of Proposal
I.  Team members: Name and a sentence on expertise for each member
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.

-  Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

-  Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV.  Intellectual Challenges
-  Generally, what makes this computation worthy of a project?
-  Point to any difficulties you anticipate at present in achieving high

speedup
CS6235	

Projects – How to Approach
•  Some questions:

1.  Amdahl’s Law: target bulk of computation
 and can profile to obtain key computations…

2.  Strategy for gradually adding GPU execution to
CPU code while maintaining correctness

3.  How to partition data & computation to avoid
synchronization?

4.  What types of floating point operations and
accuracy requirements?

5.  How to manage copy overhead? Can you overlap
computation and copying?

CS6235	

Floating Point
•  Incompatibility

–  Most scientific apps are double precision codes!
–  Graphics applications do not need double precision (criteria

are speed and whether the picture looks ok, not whether it
accurately models some scientific phenomena).

-> Prior to GTX and Tesla platforms, double precision floating
point not supported at all. Some inaccuracies in single-
precision operations.

•  In general
–  Double precision needed for convergence on fine meshes, or

large set of values
–  Single precision ok for coarse meshes

CS6235	

8"

L9:	
 Projects	
 and	
 Floa8ng	
 Point	

2/13/12

3

Some key features
•  Hardware intrinsics implemented in special functional

units faster but less precise than software
implementations

•  Double precision slower than single precision, but new
architectural enhancements have increased its
performance

•  Measures of accuracy
–  IEEE compliant
–  In terms of “unit in the last place” (ulps): the gap between

two floating-point numbers nearest to x, even if x is one of
them

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

What is IEEE floating-point
format?

•  A floating point binary number consists of three
parts:
–  sign (S), exponent (E), and mantissa (M).
–  Each (S, E, M) pattern uniquely identifies a floating point

number.

•  For each bit pattern, its IEEE floating-point value is
derived as:

–  value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

•  The interpretation of S is simple: S=0 results in a
positive number and S=1 a negative number.

Single Precision vs.
Double Precision

•  Platforms of compute capability 1.2 and below
only support single precision floating point

•  Some systems (GTX, 200 series, Tesla)
include double precision, but much slower than
single precision
–  A single dp arithmetic unit shared by all SPs in an

SM
–  Similarly, a single fused multiply-add unit

•  Greatly improved in Fermi
–  Up to 16 double precision operations performed

per warp (subsequent slides)
CS6235	

11"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

Fermi Architecture
•  512 cores
•  32 cores

per SM
•  16 SMs
•  6 64-bit

memory
partitions

2/13/12

4

Closer look at Fermi core and SM
•  48 KB L1 cache

in lieu of 16 KB
shared memory

•  32-bit integer
multiplies in
single operation

•  Fused multiply-
add

•  IEEE-Compliant
for latest
standard

Double Precision Arithmetic
•  Up to 16 DP fused multiply-adds can be

performed per clock per SM

Hardware Comparison

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

GPU Floating Point Features
G80 SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for
FADD and FMUL

Round to nearest and
round to zero

All 4 IEEE, round to
nearest, zero, inf, -inf Round to nearest only Round to zero/

truncate only

Denormal handling Flush to zero Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity
support

Yes, only clamps to
max norm Yes Yes No, infinity

Flags No Yes Yes Some

Square root Software only Hardware Software only Software only

Division Software only Hardware Software only Software only

Reciprocal estimate
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy 23 bit No 12 bit No

2/13/12

5

Summary: Accuracy vs.
Performance

•  A few operators are IEEE 754-compliant
–  Addition and Multiplication

•  … but some give up precision, presumably in
favor of speed or hardware simplicity
–  Particularly, division

•  Many built in intrinsics perform common
complex operations very fast

•  Some intrinsics have multiple implementations,
to trade off speed and accuracy
– e.g., intrinsic __sin() (fast but imprecise)

versus sin() (much slower)
CS6235	

17"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

Deviations from IEEE-754
•  Addition and Multiplication are IEEE 754 compliant

–  Maximum 0.5 ulp (units in the least place) error
•  However, often combined into multiply-add (FMAD)

–  Intermediate result is truncated

•  Division is non-compliant (2 ulp)
•  Not all rounding modes are supported in G80, but

supported now
•  Denormalized numbers are not supported in G80, but

supported later
•  No mechanism to detect floating-point exceptions (seems

to be still true)

18"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

Arithmetic Instruction Throughput
(G80)

•  int and float add, shift, min, max and float mul, mad:
4 cycles per warp
–  int multiply (*) is by default 32-bit

•  requires multiple cycles / warp
–  Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit

int multiply

•  Integer divide and modulo are expensive
–  Compiler will convert literal power-of-2 divides to shifts
–  Be explicit in cases where compiler can’t tell that divisor is

a power of 2!
–  Useful trick: foo % n == foo & (n-1) if n is a power of 2

19"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

Arithmetic Instruction Throughput
(G80)

•  Reciprocal, reciprocal square root, sin/cos,
log, exp: 16 cycles per warp
–  These are the versions prefixed with “__”
–  Examples:__rcp(), __sin(), __exp()

•  Other functions are combinations of the
above
–  y / x == rcp(x) * y == 20 cycles per warp
–  sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp

20"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

2/13/12

6

©	
 David	
 Kirk/NVIDIA	
 and	
 Wen-­‐mei	
 W.	
 Hwu,	
 2007-­‐2009	

University	
 of	
 Illinois,	
 Urbana-­‐Champaign	

Runtime Math Library
•  There are two types of runtime math

operations
–  __func(): direct mapping to hardware ISA

•  Fast but low accuracy (see prog. guide for details)
•  Examples: __sin(x), __exp(x), __pow(x,y)

–  func() : compile to multiple instructions
•  Slower but higher accuracy (5 ulp, units in the

least place, or less)
•  Examples: sin(x), exp(x), pow(x,y)

•  The -use_fast_math compiler option
forces every func() to compile to __func()

21"
L9:	
 Projects	
 and	
 Floa8ng	
 Point	

Next Class
•  Next class

– Discuss CUBLAS 2/3 implementation of
matrix multiply and sample projects

•  Remainder of the semester:
– Focus on applications and parallel

programming patterns

CS6235	

22"

L9:	
 Projects	
 and	
 Floa8ng	
 Point	

