2/13/12

L9: Project Discussion and
Floating Point Issues

THE
56235 UUNIVERSIT‘{
OF UTAH

+ Discussion of semester projects
+ Floating point

CS6235

Outline

— Mostly single precision until recent architectures

— Accuracy

— What's fast and what's not

— Reading:
Ch 6/7 in Kirk and Hwu,
http://courses.ece.illinois.edu/ece498/al/textbook/Chapter6-
FloatingPoint.pdf
NVIDA CUDA Programmer’s Guide, Appendix C

2 THE
L9: Projects and Floating Point u 8‘: IUVTEI{(}S(ITY

Project Proposal (due 3/8)

+ Team of 2-3 people

* Please let me know if you need a partner
* Proposal Logistics:
— Significant implementation, worth 50% of grade

— Each person turns in the proposal (should be same
as other team members)

* Proposal:
— 3-4 page document (11pt, single-spaced)
— Submit with handin program:
“handin 56235 prop <pdf-file>"

THE
56235 UUNIVERSIT‘{
OF UTAH

Project Parts (Total = 50%)

Proposal (5%)
— Short written document, next few slides
Design Review (10%)

—Oral, in-class presentation 2 weeks before
end

Presentation and Poster (15%)

—Poster session last week of class, dry run
week before

Final Report (20%)

— Due during finals - no final for this class

THE
u UNIVERSITY
OF UTAH

2/13/12

, Content of Proposal
Pr‘OJ eCT SC hedu l e I. Team members: Name and a sentence on expertise for each member

II. Problem description
- What is the computation and why is it important?

. ThUl"Sde, March 8, Pr‘oposals due - ?iﬁls:;ﬂ;:;oen of computation: equations, graphic or pseudo-code, no more

. Monday, Apl"ll 2, Design Reviews III. Suitability for GPU acceleration

* Wednesday, April 18, Poster Dry Run - ?J“l%“(?o'/f;f“?;ﬁ;ﬁfgi?&f’"ﬁ!!“:éfﬁ&iﬂ?ﬂf!‘iTm"EESZlZ’ZZSJS &

* Monday, April 23, In-Class Poster - ?y:f;:g:azzf';ﬁ?:ébclimumcuﬁonz Discuss what data structures may
Presentation need fo b protected by synchronizaion, or commurication fhough

- Wednesday, April 25, Guest Speaker - oy v st dtefostrint and it cost o

IV. Intellectual Challenges
- Generally, what makes this computation worthy of a project?

- Point to any difficulties you anticipate at present in achieving high
speedup

THE THE
UUNIVERSIT‘{ CS6235 UUNIVERSITY
OF UTAH OF UTAH

Projects - How to Approach Floating Point
+ Incompatibility

* Some quesﬂons; — Most scientific apps are double precision codes!
— Graphics applications do not need double precision (criteria

1. Amdahl's Law: target bulk of computation are speed and whether the picture looks ok, not whether it
and can profile to obtain key computations... accurately models some scientific phenomena).

2. Strategy for gradually adding GPU execution to -> Prior to 6TX and Tesla platforms, double precision floating
CPU code while maintaining correctness point not supported at all. Some inaccuracies in single-

precision operations.
+ Ingeneral

— Double precision needed for convergence on fine meshes, or
large set of values

— Single precision ok for coarse meshes

3. How tfo partition data & computation to avoid
synchronization?

4. What types of floating point operations and
accuracy requirements?

5. How to manage copy overhead? Can you overlap
computation and copying?

THE 8 THE
5623 CS6235
| & Jrrei [

2/13/12

Some key features What is IEEE floating-point

format?
+ Hardware intrinsics implemented in special functional + A floating point binary number consists of three
units faster but less precise than software parts:
implementations — sign (S), exponent (E), and mantissa (M).
+ Double precision slower than single precision, but new — Each (S, E, M) pattern uniquely identifies a floating point
architectural enhancements have increased its number.
performance

- Measures of accuracy + For each bit pattern, its IEEE floating-point value is

— IEEE compliant derived as:
— Interms of “unit in the last place” (ulps): the gap between .
two floating-point numbers nearest to x, even if x is one of - value = (-1)> * M * {2}, where 1.0 < M < 10.0;
them
* The interpretation of S is simple: 5=0 results ina
L 1 - ,
o po t b :")crmd S=1 a negative humber
Single Precision vs. Fermi Architecture
Double Precision « 512 cores
* Platforms of compute cqublllty 1..2 and'below . 32 cores
only support single precision floating point
. per SM
+ Some systems (6TX, 200 series, Tesla)
include double precision, but much slower than * 16 SMs
single precision + 6 64-bit
— A single dp arithmetic unit shared by all SPs in an memory
SM .
artitions
— Similarly, a single fused multiply-add unit P n
* Greatly improved in Fermi
— Up to 16 double precision operations performed
per warp (subsequent slides)
6235 L9: Projects ar:n] Floating Point

2/13/12

Closer look at Fermi core ar}d SM

+ 48 KB L1 cache : e
in lieu of 16 KB
shared memory

+ 32-bit integer
multiplies in
single operation

* Fused multiply-
add

« IEEE-Compliant p—

t 2] 2]

for latest e — |
S‘randa rd Fermi Streaming Multiprocessor (SM)

Double Precision Arithmetic
+ Up to 16 DP fused multiply-adds can be
performed per clock per SM

450%
400%
350%

300% GT200
Architecture
250%

Fermi
0% Architecture

150%
100%
50%

0%

Double Precision Matrix Double Precision Tri-Diagonal
Mutiply Solver

THE
u UNIVERSITY
OF UTAH

Hardware Comparison

Transistors 681 millien 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock 256 FMA ops /elock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /elock

Point Capability ops/clock clock

Warp schedulers (per SM) 1 1 2

Special Function Units 2 2 4

(SFUs) / SM

Shared Memory (per SM) 16KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48KB

L2 Cache (per SM) None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Upto 16

Load/Store Address Width 32-bit 32-bit 64-bit

THE
UUNIVE SITY
OF UTAH

GPU Floating Point Features
G80 SSE IBM Altivec Cell SPE
Precision 1EEE 754 IEEE 754 IEEE 754 1EEE 754
Rounding modes for Round to nearestand ~ All4 IEEE, round 0 0 Round o gerol
FADDand FMUL round to zero nearest, zero, inf, -inf Y truncate only
Supported, Supported,

Denormal handling ~ Flush to zero oot oyces oo teseles Flush to zero
NaN support Yes Yes Yes No
Overflow and InfinityYes, only clamps 0y Yes No. ifiity
support max norm
Flags No Yes Yes Some
Square root Software only Hardware Software only Software only
Division Software only Hardware Software only Software only
Reciprocal estimate 5 12 bit 12 bit 12 bit
accuracy
Reciprocal sqrt 23 bit 12 bit 12 bit 12 bit
estimate accuracy
log2(x) and 27 23 bit No 12 bit No
estimates accuracy

© David Kirk/NVIDIA and Wen.

0072006 THE
V. Hwu, 2007-2009 UNIVERSITY
University of lllinois, Urbana-Champai OF UTAH

2/13/12

Summary: Accuracy vs.

Performance
+ A few operators are IEEE 754-compliant
— Addition and Multiplication
+ .. but some give up precision, presumably in
favor of speed or hardware simplicity
— Particularly, division
+ Many built in intrinsics perform common
complex operations very fast
+ Some intrinsics have multiple implementations,
to trade off speed and accuracy
—e.g., infrinsic _sin() (fast but imprecise)
versus sin() (much slower)
17

"ite
6235 L9: Projects and Floating Point u O

Deviations from IEEE-754

Addition and Multiplication are IEEE 754 compliant
— Maximum 0.5 ulp (units in the least place) error
However, often combined into multiply-add (FMAD)
— Intermediate result is truncated

Division is non-compliant (2 ulp)

Not all rounding modes are supported in 680, but
supported now

Denormalized numbers are not supported in 680, but
supported later

No mechanism to detect floating-point exceptions (seems
to be still true)

avid Kirk/NVIDIA and Wen-mei W. Hwy, 2007-200 18 T
y of llinos, Urbana-Champaign L9: Projects and Floating Point ug‘;’{,".ﬂ‘gm{

Arithmetic Instruction Throughput
(680)

» int and float add, shift, min, max and float mul, mad:
4 cycles per warp
— int multiply (*) is by default 32-bit
requires multiple cycles / warp
— Use __mul24() / _umul24() intrinsics for 4-cycle 24-bit
int multiply

+ Integer divide and modulo are expensive
— Compiler will convert literal power-of-2 divides to shifts
— Be explicit in cases where compiler can't tell that divisor is
a power of 2!
- Useful trick: foo % n == foo & (n-1) if n is a power of 2

THE
u UNIVERSITY
OF UTAH

o 1
L9: Projects and Floating Point

+ Reciprocal, reciprocal square root, sin/cos,

» Other functions are combinations of the

Arithmetic Instruction Throughput
(680)

log, exp: 16 cycles per warp
— These are the versions prefixed with *__
— Examples:__rcp(), __sin(), _exp()

"

above
— y/ x==rcp(x) * y == 20 cycles per warp
— sqrt(x) == rcp(rsqri(x)) == 32 cycles per warp

200 20 THE
L9: Projects and Floating Point u UNIVERSITY
OF UTAH

2/13/12

Runtime Math Library

+ There are two types of runtime math
operations
— __func(): direct mapping to hardware ISA
» Fast but low accuracy (see prog. guide for details)
+ Examples: __sin(x), __exp(x), __pow(x.,y)
— func() : compile to multiple instructions

+ Slower but higher accuracy (5 ulp, units in the
least place, or less)

+ Examples: sin(x), exp(x), pow(x,y)

+ The -use_fast_math compiler option
forces every func() to compile to __func()

THE
U UNIVERSITY
OF UTAH

id Kirk/NVIDIA and wu, 2007-2009 2
y of lllinois, na-Champaign L9: Projects and Floating Point

Next Class

* Next class
— Discuss CUBLAS 2/3 implementation of
matrix multiply and sample projects
« Remainder of the semester:

— Focus on applications and parallel
programming patterns

22 THE
56235 UNIVERSITY
L9: Projects and Floating Point u OF UTAR

