
2/13/12

1

L8: Writing Correct Programs,
cont. and Control Flow

L8: Control FlowCS6235

Terminology

•  From a Control Flow perspective
•  For efficiency,

– try to ensure that all the cores are fully
used

– this implies they all do the same thing and
no one is idle

1"
L8: Control Flow

CS6235

Terminology
•  Divergent paths

– Different threads within a warp take different
control flow paths within a kernel function

– N divergent paths in a warp?
•  An N-way divergent warp is serially issued over the

N different paths using a hardware stack and per-
thread predication logic to only write back results
from the threads taking each divergent path.

•  Performance decreases by about a factor of N

2"
L8: Control Flow

CS6235 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

How thread blocks are
partitioned

•  Thread blocks are partitioned into warps
–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from generation to

generation

•  However, DO NOT rely on any ordering between warps
–  If there are any dependences between threads, you must

__syncthreads() to get correct results

3"
L8: Control Flow

2/13/12

2

First Level of Defense:
Avoid Control Flow

•  Clever example from MPM

•  No need to test for divide by 0 error,
and slight delta does not impact results

mi = Sipmpp∑ +1.0x10−100

Vi =
SipmpVpp∑
mi

Add small
constant

to mass so that
velocity

calculation never
divides by zero

4"
L8: Control Flow CS6235

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Control Flow Instructions
•  A common case: avoid divergence when branch

condition is a function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a

block
•  Branch granularity < warp size; threads 0 and 1 follow

different path than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a

block
•  Branch granularity is a whole multiple of warp size; all threads

in any given warp follow the same path

5"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Parallel Reduction Example
(related to “count 6”)

•  Assume an in-place reduction using shared
memory
– The original vector is in device global memory
– The shared memory is used to hold a partial

sum vector
– Each iteration brings the partial sum vector

closer to the final sum
– The final solution will be in element 0

6"
L8: Control Flow

How to Accumulate Result in Shared Memory

In original implementation (Lecture 1), we collected per-thread results into
d_out[threadIdx.x].

In updated implementation (Lecture 7), we collected per-block results into
d_out[0] for a single block, thus serializing the accumulation computation on
the GPU.

Suppose we want to exploit some parallelism in this accumulation part, which
will be particularly important to performance as we scale the number of
threads.

A common idiom for reduction computations is to use a tree-structured
results-gathering phase, where independent threads collect their results in
parallel. Assume SIZE=16 and BLOCKSIZE(elements computed per thread)=4.

7"
L8: Control Flow

CS6235

2/13/12

3

Recall: Serialized Gathering of Results on
GPU for “Count 6”

__global__ void compute(int *d_in, int
*d_out) {

 d_out[threadIdx.x] = 0;

 for (i=0; i<SIZE/BLOCKSIZE; i++) {

 int val = d_in[i*BLOCKSIZE +
 threadIdx.x];

 d_out[threadIdx.x] +=
	 	 compare(val, 6);
 }
}

__global__ void compute(int *d_in, int
*d_out, int *d_sum) {

 d_out[threadIdx.x] = 0;

 for (i=0; i<SIZE/BLOCKSIZE; i++) {

 int val = d_in[i*BLOCKSIZE +
 threadIdx.x];

 d_out[threadIdx.x] +=
	 	 compare(val, 6);
 }

}

 __syncthreads();

 if (threadIdx.x == 0) {

 for 0..BLOCKSIZE-1

 *d_sum += d_out[i];

 }

8"
L8: Control Flow"CS6235

Tree-Structured Computation

out[0] += out[2]

out[0] += out[1] out[2] += out[3]

out[0] out[1] out[2] out[3]

Tree-structured results-gathering phase, where independent threads collect their
results in parallel.

Assume SIZE=16 and BLOCKSIZE(elements computed per thread)=4.

9"
L8: Control Flow"CS6235

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

A possible implementation for
just the reduction

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];
}

10"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Vector Reduction with Branch Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements
iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

11"
L8: Control Flow

2/13/12

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Some Observations
•  In each iteration, two control flow paths will be sequentially

traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition may cost extra cycles depending

on the implementation of divergence
•  No more than half of threads will be executing at any time

–  All odd index threads are disabled right from the beginning!
–  On average, less than ¼ of the threads will be activated for all warps

over time.
–  After the 5th iteration, entire warps in each block will be disabled, poor

resource utilization but no divergence.
•  This can go on for a while, up to 4 more iterations (512/32=16= 24), where

each iteration only has one thread activated until all warps retire

12"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

What’s Wrong?

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)
{

 __syncthreads();

 if (t % (2*stride) == 0)

 d_out[t] += d_out[t+stride];
}

13"
L8: Control Flow

BAD: Divergence
due to interleaved
branch decisions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

A better implementation

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 d_out[t] += d_out[t+stride];
}

14"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Thread 0

No Divergence until < 16 sub-
sums

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31 1

3

4

15"
L8: Control Flow

2/13/12

5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

A shared memory implementation

•  Assume we have already loaded array into
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x >> 1;

 stride >= 1; stride >> 1)
{

 __syncthreads();

 if (t < stride)

 partialSum[t] += partialSum[t+stride];
}

16"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Some Observations About the New
Implementation

•  Only the last 5 iterations will have divergence
•  Entire warps will be shut down as iterations

progress
– For a 512-thread block, 4 iterations to shut

down all but one warp in each block
– Better resource utilization, will likely retire

warps and thus blocks faster
•  Recall, no bank conflicts either

17"
L8: Control Flow

•  For more information on reduction
– CUDA Parallel Reduction from the SDK
– Run the code and check the associated PDF
– http://developer.nvidia.com/cuda-cc-sdk-

code-samples
18"

L8: Control Flow

Page 16 from Optimizing Parallel Reduction in CUDA,
CUDA SDK

Tree
Approach

Predicated Execution Concept

•  A way to eliminate (to some extent) branching
•  All instructions are fetched and executed

<p1> LDR r1,r2,0

•  If p1 is TRUE, instruction executes normally

•  If p1 is FALSE, instruction treated as NOP

19"
L8: Control Flow"

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2/13/12

6

Predication Example

:

:

if (x == 10)

 c = c + 1;

:

:

 :

 :

 LDR r5, X

 p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

 :

 :

20"
L8: Control Flow"

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

B

A

C

D

A
B
C
D

Predication can be very helpful for
if-else

21"
L8: Control Flow"

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

If-else example
		:
		:

 p1,p2 <- r5 eq 10

<p1> inst 1 from B

<p1> inst 2 from B

<p1> 	:
		:

<p2> inst 1 from C

<p2> inst 2 from C

 	 	:
		:

		:
		:

 p1,p2 <- r5 eq 10

<p1> inst 1 from B

<p2> inst 1 from C

<p1> inst 2 from B

<p2> inst 2 from C

<p1> 	:
		:

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

22"
L8: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009"
ECE 498AL, University of Illinois, Urbana-Champaign"

Instruction Predication in G80
•  Comparison instructions set condition codes (CC)
•  Instructions can be predicated to write results only when CC

meets criterion (CC != 0, CC >= 0, etc.)
•  Compiler tries to predict if a branch condition is likely to

produce many divergent warps
–  If guaranteed not to diverge: only predicates if < 4 instructions
–  If not guaranteed: only predicates if < 7 instructions

•  May replace branches with instruction predication
•  ALL predicated instructions take execution cycles

–  Those with false conditions don’t write their output
•  Or invoke memory loads and stores

–  Saves branch instructions, so can be cheaper than serializing
divergent paths (for small # instructions)

23"
L8: Control Flow

2/13/12

7

Warp Vote Functions
(Compute Capability > 1.2)

•  Can test whether condition on all threads in a
warp evaluates to same value

int __all(int predicate):
evaluates predicate for all threads of a warp and

returns non-zero iff predicate evaluates to non-zero
for all of them.

int __any(int predicate):
evaluates predicate for all threads of a warp and

returns non-zero iff predicate evaluates to non-zero
for any of them.

24"
L8: Control Flow

CS6235

Using Warp Vote Functions
•  Can tailor code for when none/all take a branch.
•  Eliminate overhead of branching and

predication.
•  Particularly useful for codes where most

threads will be the same
– Example 1: looking for something unusual in

image data
– Example 2: dealing with boundary conditions

25"
L8: Control Flow

CS6235

Summary of Lecture
•  Impact of control flow on performance

–  Due to SIMD execution model for threads
•  Execution model/code generated

–  Stall based on CC value (for long instr sequences)
–  Predicated code (for short instr sequences)

•  Strategies for avoiding control flow
–  Eliminate divide by zero test (MPM)
–  Warp vote function

•  Group together similar control flow paths into warps
–  Example: “tree” reduction

L8: Control FlowCS6235

