2/7/12

L7: Writing Correct
Programs

L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Administrative

* Next assignment available
— Goals of assignment:
—simple memory hierarchy management
—block-thread decomposition tradeoff
— Due Friday, Feb. 10, 5PM

— Use handin program on CADE machines
« “handin €56235 lab2 <probfile>"

56235 2

THE
u UNIVERSITY
OF UTAH

€S6235

Outline

How to tell if your parallelization is correct?
Definitions:

— Race conditions and data dependences

— Example

Reasoning about race conditions

A Look at the Architecture:

how to protect memory accesses from race conditions?

Synchronization within a block: __syncthreads();
Synchronization across blocks (through global memory)
— atomicOperations (example)

— memoryFences
Debugging

L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Timing Code for Assignment

« Timing example (excerpt from
simpleStreams in CUDA SDK):

cudaEvent_t start_event, stop_event;
cudaEventCreate(&start_event);

cudaEventCreate(&stop_event);

cudaEventRecord(start_event, 0);

init_array<<<blocks, threads>>>(d_a, d_c, niterations);
cudaEventRecord(stop_event, 0);
cudaEventSynchronize(stop_event);
cudaEventElapsedTime(&elapsed_time, start_event, stop_event);

L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/7/12

What can we do to determine if
parallelization is correct in CUDA?

+ -deviceemu code (to be emulated on host, executed serially)
— Versions prior to CUDA 3.x
*+ Can compare GPU output to CPU output, or compare GPU output
to device emulation output
* Race condition may still be present
+ Debugging environments (new!)
+ Cuda gdb (Linux)
+ Parallel Nsight (Windows and Vista)

We'll come back to both of these at the end.

+ Or can (try o) prevent infroduction of race conditions (bulk of
lecture

Reminder: Count 6s from L1

+ Global, device functions and excerpts from host, main

int__host__ void outer_compute
__device__ int compare(int a, int b) { (int *h_in_array, int *h_out_array) {
if (a==D) return 1;
e compute<<<1,BLOCKSIZE,msize)>>>
} (d_in_array, d_out_array);

cudaMemcpy(h_out_array, d_out_array,

—§L°ba|— BLOCKSIZE*sizeof(int),
_out) { cudaMemcpyDeviceToHost);
d_out[thre|
for (i=0; i< ain(int argc, char **argv) {
int val = d_in[i*BLOCKSIZE +
threadidx.x]; for (int i=0; i<BLOCKSIZE; i++)

{ sum+=out_arrayl[i]; }
printf (“Result = %d\n",sum);

d_out[threadldx.x] +=
compare(val, 6);

!)

}
€S6235 L7: Writing Correct Programs CS6235 L7: Writing Correct Programs
What if we computed sum on GPU?
+ Global, device functions and excerpts from host, main Thr'eads ACCQSS The SClme Memor‘Y!
in(t_Thﬁsg_ void o_u:erﬁcomp)ute
__device__int compare(int a, int b) { int *h_in_array, int *h_sum L
bl + Global memory and shared memory within an
, ' Computess=l BLOCKSIZE msize)z2> SM can be freely accessed by multiple
cudaThreadSynchronize(); Thr‘eads
. . . cudaMemcpy(h_sum, d_sum, . . .
glcl:l:)l{ void compute(int *d_in, int sizeof{(int), . . Requmes appr‘opr‘na*re sequencing of memory
o i accesses across threads to same location if
for (i=0; i<SIZE/BLOCKSIZE; i++) { at least one access is a write
int val = d_in[i*BLOCKSIZE +
threadldx.x]; int \sum; // an integer
*sum += outer_compute(in_array, sum);
wEmeEE(E, G printf ("Result = %d\n",sum);
Y !
cs6235 L7: Writing Correct Programs Cs6235 L7: Writing Correct Programs

2/7/12

More Formally: Data Dependence

Race Condition or Data Dependence . Definition:
Two memory accesses are involved in a data dependence if they may
* A race condition exists when the result refer o the same memory location and one of the references is a

. o o write.
of an execution depends on the timing
A data dependence can either be between two distinct program
Of two or more events. statements or two different dynamic executions of the same
* A data dependence is an ordering on a program statement.

palr‘ Of memor'y qper‘.ahons 'H"lGT must be » Two important uses of data dependence information (among others):
preserved to maintain correctness. Parallelization: no data dependence between two computations &

parallel execution safe

Locality optimization: absence of data dependences & presence of
reuse = reorder memory accesses for
better data locality (next week)

56235 L7: Writing Correct Programs U{JHIEUVERSIT\{ cs6235 L7: Writing Correct Programs u{j’ﬁuvmsny
OF UTAH OF UTAH

Data Dependence of Scalar Some Definitions (from Allen & Kennedy)
Variables - Definition 2.5:

— Two computations are equivalent if, on the same inputs,
e + they produce identical outputs
Anﬁ-dependenc_e * the outputs are executed in the same order

za » Definition 2.6:

True (flow) dependence
a =

a
Output dependence — A reordering transformation

a = + changes the order of statement execution
+ without adding or deleting any statement executions.

a =
Input dependence (for locality)
sa + Definition 2.7:

sa . . .
— A reordering transformation preserves a dependence if
Definition: Data_dependence exists from a reference * it preserves the relative execution order of the dependences’
instance i to i' iff source and sink.
either ior i’ is a write operation
i and i' refer to Th% same variable Reference: “Optimizing Compilers for Modern Architectures: A Dependence-Based
i executes before i Approach”, Allen and Kennedy, 2002, Ch. 2.

56235 L7: Writing Correct Programs U{JHIEUVERSIT\{ cs6235 L7: Writing Correct Programs u{j’ﬁuvmsny
OF UTAH OF UTAH

2/7/12

56235 L7: Writing Correct Programs

Fundamental Theorem of
Dependence

» Theorem 2.2:

— Any reordering transformation that preserves
every dependence in a program preserves the
meaning of that program.

THE
u UNIVERSITY
OF UTAH

Parallelization as a Reordering
Transformation in CUDA

__host callkernel() { __host callkernel() {
dim3 blocks(bx,by);
dim3 threads(tx.ty.tz); for (int bldx_x=0; bldx_x<bx; bldx_x++]) {
. kernelcode<<<blocksthreads>>> for (int bldx_y=0; bldx_y<by; bldx_y++] {
(<args>}; for (int tldx_x=0; tldx_x<tx; tldx_x++) {
} for (int tldx_y=0; tldx_y<ty; tidx_y++] {
__global kernelcode(<args>) { for (int tldx_z=0; tldx_z<tz; tldx_z++) {
/* code refers to threadldx.x,
Engslildx"i' threadldxz, blockldxx, /* code refers to tldx_x, tldx_y, tldx_z,
xy */ bldx_x, bldx_y */

})

EQUIVALENT?

56235 L7: Writing Correct Programs

THE
UNIVERSITY
OF UTAH

56235 L7: Writing Correct Programs

Consider Parallelizable Loops

Forall (or CUDA kernels or Doall) loops:
Loops whose iterations can execute in parallel (a particular reordering
transformation)

Example
forall (i=1; i<=n; i++)
A[i] = B[i] + C[i];
Meaning?

Each iteration can execute independently of others
Free to schedule iterations in any order

Why are parallelizable loops an important concept for data-parallel
programming models?

THE
u UNIVERSITY
OF UTAH

CUDA Equivalent to “Forall”

__host callkernel() {

forall (int bldx_x=0; bldx_x<bx; bldx_x++) {
forall {int bldx_y=0; bldx_y<by; bldx_y++) {
forall (int tldx_x=0; tldx_x<tx; tldx_x++) {
forall (int tldx_y=0; tldx_y<ty; tldx_y++] {
forall (int tldx_z=0; tldx_z<tz; tldx_z++) {

/ * code refers to tldx_x, tldx_y, tldx_z,

bldx_x, bldx_y */
mh

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/7/12

Using Data Dependences to Reason
about Race Conditions

+ Compiler research on data dependence
analysis provides a systematic way to
conservatively identify race conditions on
scalar and array variables
—"Forall” if no dependences cross the iteration

boundary of a parallel loop. (ho loop-carried
dependences)
— If a race condition is found,

— EITHER serialize loop(s) carrying dependence by
Lnakaing Sr internal to thread program, or part of the
ost code

— OR add "synchronization”

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Back to our Example: What if Threads
Need to Access Same Memory Location

+ Dependence on sum across iterations/threads
— But reordering ok since operations on sum are associative
+ Load/increment/store must be done atomically to
preserve sequential meaning
* Add Synchronization
— Protect memory locations
— Control-based (what are threads doing?)
+ Definitions:
— Atomicity: a set of operations is atomic if either they all

execute or none executes. Thus, there is no way fo see the
results of a partial execution.

— Mutual exclusion: at most one thread can execute the code
at any time

— Barrier: forces threads to stop and wait until all threads
have arrived at some point in code, and typically at the same

point
T
u UNIVERSITY
OF UTAH

56235 L7: Writing Correct Programs

Gathering Results on GPU:
Barrier Synchronization w/in Block

void _ syncthreads();

* Functionality: Synchronizes all threads in a block

— Each thread waits at the point of this call until all
other threads have reached it

— Once all threads have reached this point, execution
resumes normally

* Why is this needed?

— A thread can freely read the shared memory of its
thread block or the global memory of either its
block or grid.

— Allows the program to guarantee partial ordering of
these accesses to prevent incorrect orderings.

+ Watch out!

— Potential for deadlock when it appears in

conditionals

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Gathering Results on GPU for "Count 6"

lobal__ void compute(int *d_in, int lobal__ void compute(int *d_in, int
_gd_ouf)_(_gdiout, int *d_sum) {

d_out[threadldx.x] = 0;
for (i=0; i<SIZE/BLOCKSIZE; i++) {
intval =d in,i*BLOCKSIZE +
dlidx

d_out[threadldx.x] = 0;
for (i=0; i<SIZE/BLOCKSIZE; i++) {
] intval = d_insi*BLOCKSIZE +
; threadldx.x

d_out[threadldx.x] +=

compare(val, 6);

} }
__syncthreads();

if (threadldx.x == 0) {

for 0..BLOCKSIZE-1

threadldx.x ;
d_out[threadldx.x] +=
compare(val, 6);

*d_sum += d_out[i];

}
}

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/7/12

Gathering Results on GPU:
Atomic Update to Sum Variable
int atomicAdd(int* address, int val);

Increments the integer at address by val.

Atomic means that once initiated, the
operation executes to completion
without interruption by other threads

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Gathering Results on GPU for "Count 6"

§110b3|ﬂ(VOid compute(int *d_in, int _§Iobal_ void compute(int *d_in, int
_ou

d_out, int *d_sum) {
d_out[threadldx.x] = 0;
for (i=0; i<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE +
thread|dx.x

d_out[threadldx.x] = 0;
for (i=0; i<SIZE/BLOCKSIZE; i++) {

intval = d_insi*BLOCKSIZE +
; threadldx.x

d_out[threadldx.x] += d_out[threadldx.x] +=
compare(val, 6); compare(val, 6);

}
} }

atomicAdd(d_sum,
d_out_array[threadldx.x]);

Efficient? Find right granularity.
}

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Available Atomic Functions

All but CAS take two operands (unsigned int *address, int (or other type) val);

Arithmetic:
« atomicAdd() - add val to address
« atomicSub() - subtract val from address
atomicExch() - exchange val at address, return old value
« atomicMin()
« atomicMax()
« atomicInc()
« atomicDec()
« atomicCAS()

Bitwise Functions:
« atomicAnd()

« atomicOr()

« atomicXor()

See Appendix B11 of NVIDIA CUDA 3.2 Programming Guide

56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Atomic Operations

+ Only available for devices with compute
capability 1.1 or higher

+ Operating on shared memory and for either
32-bit or 64-bit global data for compute
capability 1.2 or higher

*+ 64-bit in shared memory for compute
capability 2.0 or higher

+ atomicAdd for floating point (32-bit) available
for compute capability 2.0 or higher
(otherwise, just signed and unsigned integer).

THE
u UNIVERSITY
OF UTAH

L7: Writing Correct Programs

2/7/12

Synchronization Within/Across Blocks:

Memory Fence Instructions

void __threadfence_block():

+ waits until all global and shared memory accesses made by the
calling thread prior to call are visible to all threads in the thread
block. In general, when a thread issues a series of writes to
memory in a particular order, other threads may see the effects
of these memory writes in a different order.

void __threadfence().

+ Similar to above, but visible to all threads in the device for
global memory accesses and all threads in the thread block for
shared memory accesses.

void __threadfence_system():

+ Similar to above, but also visible to host for "page-locked” host
memory accesses.

Appendix B.5 of NVIDIA CUDA Programming Manual
56235 L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

Memory Fence Example

__device__ unsigned int count = 0;

__shared__ bool isLastBlockDone;

__global__ void sum(const float* array,

unsigned int N, float* result) {

// Each block sums a subset of the input array

float partialSum = calculatePartialSum(array, N);

if (threadldx.x == 0) {
// Thread 0 of each block stores the partial sum
// to global memory
result[blockldx.x] = parti;

// Synchronize to make sure that each thread
// reads the correct value of isLastBlockDone
__syncthreads();

if (isLastBlockDone) {

// The last block sums the partial sums
stored in result[0 .. gridDim.x-1]
Make sure write to totalSum = calculateTotalSum(result);

result complete

// Thread 0 makes sure before continuing

// all other threads
__threadfence();

hreadldx.x == 0) {
// Thread 0 of last block stores total sum
// to global memory and resets count so that

next kernel call works properl
// Thread 0 of each block signals that it is done 4 LT

unsigned int value = atomiclnc(&count, gridDim.x);

result[0] = totalSum;
count =0;

// Thread 0 of each block determines if its block is }
// the last block to be done
isLastBlockDone = (value == (gridDim.x - 1)); }

L7: Writing Correct Programs

THE
UNIVERSITY
OF UTAH

Host-Device Transfers (implicit in
synchronization discussion)
* Host-Device Data Transfers

— Device to host memory bandwidth much lower
than device to device bandwidth

— 8 GB/s peak (PCI-e x16 Gen 2) vs. 102 6B/s peak
(Tesla C1060)
* Minimize transfers

— Intermediate data can be allocated, operated on,
and deallocated without ever copying o host
memory

* Group fransfers
— One large transfer much better than many small

ones
THE
UUNIVERS[TY
OF UTAH

Slide source: Nvidia, 2008

Asynchronous Copy To/From Host
(compute capability 1.1 and above)

+ Concept:
— Memory bandwidth can be a limiting factor on 6PUs
— Sometimes computation cost dominated by copy cost

— But for some computations, data can be “tiled" and computation of
tiles can proceed in parallel (some of your projects may want to do
this, particularly for large data sets)

— Can we be computing on one tile while copying another?

» Strategy:
— Use page-locked memory on host, and asynchronous copies
— Primitive cudaMemcpyAsync
— Effect is GPU performs DMA from Host Memory
— Synchronize with cudaThreadSynchronize()

THE
u UNIVERSITY
OF UTAH

2/7/12

Page-Locked Host Memory

* How the Async copy works:
— DMA performed by GPU memory controller
— CUDA driver takes virtual addresses and
translates them to physical addresses
— Then copies physical addresses onto GPU
— Now what happens if the host OS decides to
swap out the page???
+ Special malloc holds page in place on host
— Prevents host OS from moving the page
— CudaMallocHost()
+ But performance could degrade if this is done on

lots of pages!
UUNIVERSIT‘{
OF UTAH

— Bypassing virtual memory mechanisms

Example of Asynchronous
Data Transfer

cudaStreamCreate(&streaml);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dstl, srcl, size, dir, streaml);
kernel«<grid, block, O, stream1>>>(...);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<«<grid, block, 0, stream2>>>(...);

src1 and src2 must have been allocated using cudaMallocHost

stream1 and stream2 identify streams associated with asynchronous
call (note 4" “parameter” to kernel invocation, by default there is one

stream)
THE
u UNIVERSITY
OF UTAH

Code from asyncAPI SDK project

// allocate host memory
CUDA_SAFE_CALL(cudaMallocHost((void**)&a, nbytes));
memset(a, 0, nbytes);

// allocate device memory
CUDA_SAFE_CALL(cudaMalloc((void**)&d_a, nbytes)):
CUDA_SAFE_CALL(cudaMemset(d_a, 255, nbytes));

... // declare grid and thread dimensions and create start and stop events

// asynchronously issue work to the GPU (all to stream 0)
cudaEventRecord(start, 0);

cudaMemcpyAsync(d_a, a, nbytes, cudaMemcpyHost ToDevice, 0):
increment_kernel<«blocks, threads, 0, 0>>(d_a, value);
cudaMemcpyAsync(a, d_a, nbytes, cudaMemcpyDeviceToHost, 0);
cudaEventRecord(stop, 0);

// have CPU do some work while waiting for GPU to finish
// release resources

CUDA_SAFE_CALL(cudaFreeHost(a));
CUDA_SAFE_CALL(cudaFree(d_a));

THE
u UNIVERSITY
OF UTAH

More Parallelism to Come
(Compute Capability 2.0)

Stream concept: create, destroy, tag asynchronous
operations with stream
— Special synchronization mechanisms for streams:
queries, waits and synchronize functions
+ Concurrent Kernel Execution
— Execute multiple kernels (up to 4) simultaneously
+ Concurrent Data Transfers
— Can concurrently copy from host to GPU and GPU to
host using asynchronous Memcpy

Section 3.2.6 of CUDA manual

L7: Writing Correct Programs

THE
u UNIVERSITY
OF UTAH

2/7/12

Debugging: Run-time functions & macros for

i Summary of Lecture
error checking bata denend b d o determine th
: : . a dependence can be used to determine the
In CUDA run-fime services,) sa em J’fereor‘&er‘fng transformations such as
cudaGetDeviceProperties(deviceProp &dp, d); parallelization

check number, type and whether device present

+ preserving dependences = preserving "meaning”
In libcutil.a of Software Developers' Kit, + In the presence of dependences, synchronization is
cutComparef (float *ref, float *data, unsigned len); needﬁd ‘Fo guqr‘anfee;%?e access ix rr.\emor'y
compare output with reference from CPU implementation *+ Sync r‘OYNhZClT:jOn rtr)\ec. ams.mh.s OanG IEJS.

In cutil.h of Software Developers' Kit (with #define =~ __syncthreads() barrier within a bloc

_DEBUG or -D_DEBUG compile flag), — Atomic functions on locations in memory across blocks

- fV\eE'\ocm‘fences within and across blocks, and host page-
CUDA_SAFE_CALL(f(<args>)), CUT_SAFE_CALL(f(<args>)) ocked memory

check for error in run-time call and exit if error detected * More concurrent execution
CUT_SAFE_MALLOC(cudaMalloc(<args»));

— Host page-locked memory
similar to above, but for malloc calls — Concurrent streams
CUT_CHECK_ERROR("error message goes here");

+ Debugging your code
check for error immediately following kernel execution and
if detected, exit with error message

56235 L7: Writing Correct Programs U{JHIEHVERSIT\{ cs6235 L7: Writing Correct Programs U{J"‘E,IVERSITY
OF UTAH OF UTAH

Next Time

« Control Flow
— Divergent branches

cs6235 L7: Writing Correct Programs U{JH[EHVERS[T‘{
OF UTAH

