2/7/12

Administrative

* Next assignment available

L6: Memory Hierarchy Optimization IV, ~ Godls of assignment:
—simple memory hierarchy management

Bandwidth Optimization —block-thread decomposition tradeoff
— Due Tuesday, Feb. 9, 5PM

— Use handin program on CADE machines
« “handin €56235 lab2 <probfile>"

CS6235 U{JHIEIIVERS[TY €s6235 L5: Memory Hlerarchy, IV 2 UH{IEIIVERSITY
OF UTAH OF UTAH

Assignment 2: Memory Hierarchy Optimization
Due Tuesday, February 7 at 5PM Example

Sobel edge detection:

Find the boundaries of the image ~ for(i=1i i<ImageNRows - 1;i++) Input Output
where there is significant ﬂzr 1= < mageNCols 1;++)
difference as compared to sum1 = ufi-1](j+1] - ufi-1][j-1]
neighboring “pixels” and replace + 2[‘ u[]i[ll[J+]11 - T * n]:[lji][i]—ll
H +u[i+1][j+1] - u[i+1][j-1];
values to find edges sum2 = ufi-1](-1] + 2 * u[i-1][j] + u(i-1)(j+1]
I u ™ E - u[i#1][-1] - 2 * uli+](j] - ufiA]f+1];
> 1> magnitude = sum1*sum1 + sum2*sum2;
. if (magnitude > THRESHOLD)
elil(j] = 255;
else
e[i](i] = 0;

}

e W e

€S6235

3 "ite T
La: Memory Hierarchy | Ugr;ul}/TEARngv ULCJ)IEIBITE’{(}’)(ITY

2/7/12

General Approach

0. Provided
a. Input file
b. Sample output file
c. CPU implementation
1 Structure
a. Compare CPU version and GPU version output [compareInt]
b. Time performance of two GPU versions (see 2 & 3 below) [EventRecord]

2. GPU version 1 (partial credit if correct)
implementation using global memory

3. GPU version 2 (highest points to best performing versions)
use memory hierarchy optimizations from previous, current and Monday's lecture

4. Extra credit: Try two different block / thread decompositions. What happens if you use
more threads versus more blocks? What if you do more work per thread? Explain your
choices in a README file.

Handin using the following on CADE machines, where probfile includes all files

“handin ¢s6235 lab2 <probfile>”

THE
u UNIVERSITY
OF UTAH

Overview

+ Bandwidth optimization
+ Global memory coalescing
+ Avoiding shared memory bank conflicts
+ A few words on alignment
*+ Reading:
— Chapter 4, Kirk and Hwu

— http://courses.ece.illinois.edu/ece498/al/textbook/
Chapter4-CudaMemoryModel.pdf

— Chapter 5, Kirk and Hwu

— http://courses.ece.illinois.edu/ece498/al/textbook/
Chapter5-CudaPerformance.pdf

— Sections 3.2.4 (texture memor‘yg and 5.1.2 (bandwidth
optimizations) of NVIDIA CUDA Programming Guide

6
2.
€s6235 L6: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Targets of Memory Hierarchy
Optimizations

*+ Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

* Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should b% less ‘rhag arF:Ticipa'red gain9 PYing

7
2
56235 L6: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Optimizing the Memory Hierarchy on
GPUs, Overview

+ Device memory access times non-uniform so data
placement significantly affects performance.
+ But controlling data placement may require additional
copying, so consider overhead.
» Optimizations to increase memory bandwidth.
Idea: maximize utility of each memory access.
+ Coalesce global memory accesses
* Avoid memory bank conflicts to increase memory
access parallelism
+ Align data structures to address boundaries
+ More minor effects
+ Partition camping to avoid global memory bank conflicts
+ Use texture accesses to increase parallelism of memory

accesses (if other global accesses are occurrin
simultaneously) [example later in the semester

THE
u UNIVERSITY
OF UTAH

8
2.
56235 L6: Memory Hierarchy IV

2/7/12

€S6235

Data Location Impacts Latency of
Memory Access

Registers
— Can load in current instruction cycle

Constant or Texture Memory

— In cache? Single address can be loaded for half-
warp per cycle

— O/W, global memory access
Global memory

Shared memory
— Single cycle if accesses can be done in parallel

THE
U UNIVERSITY
OF UTAH

9
L6: Memory Hierarchy IV

Introduction to Memory System

* Recall execution model for a multiprocessor
— Scheduling unit: A “warp” of threads is issued
at a time (32 threads in current chips)
— Execution unit: Each cycle, 8 "cores” or SPs are
executing (32 cores in a Fermi)
— Memory unit: Memory system scans a “half

warp” or 16 threads for data to be loaded; (full
warp for Fermi)

10
€s6235 L6: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

€S6235

Global Memory Accesses

Each thread issues memory accesses to
data types of varying sizes, perhaps as
small as 1 byte entities

Given an address to load or store, memory
returns/updates “segments” of either 32
bytes, 64 bytes or 128 bytes

Maximizing bandwidth:

— Operate on an entire 128 byte segment for
each memory transfer

THE
U UNIVERSITY
OF UTAH

11
L6: Memory Hierarchy IV

Understanding Global Memory Accesses

Memory protocol for compute capability 1.2 and
1.3* (CUDA Manual 5.1.2.1 and Appendix A.1)

+ Start with memory request by smallest numbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on data
type)

+ Find other active threads requesting addresses within
that segment and coalesce

+ Reduce transaction size if possible
+ Access memory and mark threads as “inactive”
+ Repeat until all threads in half-warp are serviced

*Includes Tesla and GTX platforms as well as new Linux machines!
THE
UUNIVERSITY
OF UTAH

12
56235 L6: Memory Hierarchy IV

2/7/12

Protocol for most systems (including lab6é
machines) even more restrictive

* For compute capability 1.0 and 1.1
— Threads must access the words in a
segment in sequence
— The kth thread must access the kth word

— Alignment to the beginning of a segment
becomes a very important optimization!

15 THE
CS6235 L6: Memory Hierarchy IV u S'E’ B’-ﬁ&i[w

Memory Layout of a Matrix in C

Consecutive
threads will

Access access different

irection i rows in memory.
ilgfsglon in MDJ M|,| M2.1 M3.1

code M., Mo M, M Each thread will
0,2 12 22 k¥3

require a different

MU‘S M13 M2.3 MS.'J memory

Time Period 2 operation.
AF T Ty T, |Odd:Butthisis
the RIGHT layout
Tipne Period 1 fora
T T, Ty T, conventional

| multi-core!

1]

I Moy My y Mg Mgy Mo, M,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 14
ECE 498AL, University of llinois, Urbana-Champaign —6: Memory Hierarchy IV

THE
UNIVERSITY
OF UTAH

Memory Layout of a Matrix in C
Access n!m

Each thread in a half-
warp (assuming rows

i‘recnlon in Myq My Mpy Mgy of 16 elements) will
ernel Moo Moo Mos M access consecutive
code 12l 22 2 memory locations.
Mjs Miz Mg M5
GREAT! All accesses
are coalesced.
With just a 4x4 block,
Time Period 1 Time Period 2 we may need 4

separate memory
operations to load data
for a half-warp.

T, T, Ty T (T, T, T3 Ty

ARAANANE
[

1 Mig Mgy My Moz My M, My, Mog Mys Mpg Ms

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

15
ECE 498AL, University of llinois, Urbana-Champaign L6 Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

How fo find out compute capability

See Appendix A.1 in NVIDIA CUDA Programming Guide to look up your device.
Also, recall “deviceQuery” in SDK to learn about features of installed device.

Linux lab, most CADE machines and Tesla cluster are Compute Capability 1.2 and

Fermi machines are 2.x.

16 THE —
€s6235 L6: Memory Hierarchy IV u 8‘: [L}/TE,FS(IT\

2/7/12

Alignment

* Addresses accessed within a half-warp
may need to be aligned to the beginning
of a segment to enable coalescing
— An aligned memory address is a multiple of

the memory segment size

—In compute 1.0 and 1.1 devices, address
accessed by lowest numbered thread must
be aligned to beginning of segment for
coalescing

—In future systems, sometimes alignment

17
2.
56235 L6: Memory Hierarchy IV

can reduce number of accesses
U{JH[EJIVERSITY
OF UTAH

« May want to align structures

CS6235 8

More on Alignment

* Objects allocated statically or by
cudaMalloc begin at aligned addresses

— But still need to think about index
expressions

struct __align__(8) { struct __align__(16) {

float a; float a;
float b; float b;

Y float c;
Y

THE
u UNIVERSITY
OF UTAH

L6: Memory Hierarchy IV

What Can You Do to Improve Bandwidth
to Global Memory?

* Think about spatial reuse and access
patterns across threads
— May need a different computation & data
partitioning
— May want to rearrange data in shared
memory, even if no temporal reuse
(transpose example)

— Similar issues, but much better in future
hardware generations

19
56235 L6: Memory Hierarchy IV

THE
U UNIVERSITY
OF UTAH

CS6235

Bandwidth to Shared Memory:
Parallel Memory Accesses

Consider each thread accessing a
different location in shared memory

Bandwidth maximized if each one is able
to proceed in parallel
Hardware fo support this

— Banked memory: each bank can support an
access on every memory cycle

20 THE
L6: Memory Hierarchy IV u gl;l IUV_l[-LI{lrS(ITY

2/7/12

How addresses map to banks on 680

« Each bank has a bandwidth of 32 bits
per clock cycle

+ Successive 32-bit words are assigned to
successive banks

+ 680 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

» No bank conflicts between different half-
warps, only within a single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 21 THE A
ECE 498AL, University of linois, Urbana-Champaign ~ L6 Memory Hierarchy IV u gf;’ lL\I/TE{l}_)llT\

Shared memory bank conflicts

Shared memory is as fast as registers if there are no
bank conflicts

The fast case:

— If all threads of a half-warp access different banks, there
is no bank conflict

— If all threads of a half-warp access the identical address,
there is no bank conflict (broadcast)

The slow case:

— Bank Conflict: multiple threads in the same half-warp
access the same bank

— Must serialize the accesses

— Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 22 THE A
ECE 438AL, University of llinois, Urbana-Champaign |6 Memory Hierarchy IV u 8!;1 IL}[rE\RI:\(lT\
/

Bank Addressing Examples

« No Bank Conflicts » No Bank Conflicts

— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1 =
Thread 2 —
Thread 3 "
Thread 4 |
Thread 5 |
Thread 6 |
Thread 7

Thread 15 Bank 15

Bank 15

Bank Addressing Examples

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 23 THE A
ECE 498AL, University of llinois, Urbana-Champaign L6 Memory Hierarchy IV u gf;’ lL\I/TE{l}_)llT\

2-way Bank Conflicts + 8-way Bank Conflicts

— Linear addressing — Linear addressing
stride == stride ==

Thread 0
Thread 1
Thread 2
Thread 3 §
Thread 4
Thread 5 7
Thread 6
Thread 7

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 24 THE A
ECE 438AL, University of llinois, Urbana-Champaign |6 Memory Hierarchy IV u 8!;1 IL}[rE\RI:\(lT\
/

2/7/12

Putting It Together: Global Memory
Coalescing and Bank Conflicts

Let's look at matrix transpose
Simple goal: Replace A[i][j] with A[j][i]
Any reuse of data?

Do you think shared memory might be
useful?

25
L6: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Matrix Transpose (from SDK)

_global__ void transpose(float *odata, float *idata, int width, int height)
{ - .

// read the element
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y:
unsigned int index_in = yIndex * width + xIndex;

temp = idata[index_in];

// write the transposed element to global memory

xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y:
unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = temp;

56235 26 THE —
L6: Memory Hierarchy IV lCJ)I;l IL}/TE’&IT\

_global__ void transpose(float *odata, float *idata, int width, int height)
T ———— —

€S6235

Coalesced Matrix Transpose

__shared__ float block[BLOCK_|

// read the matrix tile into shared mel
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads(): JE—

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
unsigned int index_out = yIndex * height + xIndex;
odatafindex_out] = block[threadIdx.x][threadIdx.y];

global memory

27
L6: Memory Hierarchy IV

THE
u UNIVERSITY
OF UTAH

Optimized Matrix Transpose (from SDK)

_global__ void transpose(float *odata, float *idata, int width, int height)
T —

__shared__ float block[BLOCK_DIM][

// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads(): P

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
unsigned int index_out = yIndex * height + xIndex;
odatalindex_out] = block[threadIdx.x][threadIdx.y];

56235 28 THE —
L6: Memory Hierarchy IV u lCJ)I;l IL}/TE’&IT\

global memory

2/7/12

Further Optimization: Partition Camping Perfon;[l:ni:giolisees?g;;ggé\;\a‘mx

* A further optimization improves bank

conflicts in global memory n—
+ But has not proven that useful in codes with
additional computation ‘
* Map blocks to different parts of chips Qj ‘
. il [

GBisec

int bid = blockIdx.x + gridDim.x*blockIdx.y;
by = bid%gridDim.y; p
bx = ((bid/gridDim.y)+by)%gridDim.x; e S e

024 6144 o192

SDK-prev: all optimizations other than partition camping
CHIiLL: generated by our compiler
SDK-new: includes partition camping

29 e 30 THE N
L6: Memory Hierarchy IV u O L6: Memory Hierarchy IV u UNIVERSITY

Summary of Lecture

+ Completion of bandwidth optimizations
— Global memory coalescing
— Alighment
— Shared memory bank conflicts
—"Partitioning camping”

* Matrix transpose example

UK cs6235 e UK s
U Ceny s e v U Ceny

2/7/12

Next Time

* A look at correctness
* Synchronization mechanisms

