1/25/12

L5: Memory Hierarchy Optimization III,
Data Placement, cont. and Memory
Bandwidth Optimizations

Administrative

* Next assignment available
—Next three slides

—Goals of assignment:
—simple memory hierarchy management
—block-thread decomposition tradeoff

— Due Tuesday, Feb. 7, 5PM

— Use handin program on CADE machines

* “handin €56235 lab2 <probfile>"

cs6235 15:MemoryHirarchy 1 cs6235 152 MemoryHirarehy 2
Assignment 2: Memory Hierarchy Optimization
Due Tuesday, February 7 at 5PM
Y Y Example
Sobel edge detection:
for (i=1; i <ImageNRows - 1; i++) Input Output

Find the boundaries of the image for (12 1;] < ImogeNCols -1, j+4)

where there is significant (
difference as compared to sum1 = ufi-1](j+1] - u[i-1][j-1]
neighboring “pixels” and replace +2* ulilfj+1] - 2 * uli][-1]
: +uli+1](+1] - uli+1]-1);
values to find edges sum2 = ufi-1](-1] + 2 * u[i-1][j] + u(i-1)(j+1]
™ u ™ E - uli+1](-1] - 2 * uli1]] - uli+ L)+ L);
> > magnitude = sum1*sum1 + sum2*sum2;
. if (magnitude > THRESHOLD)
elil(j] = 255;
else
efillil = 0;

}

e W e

€S6963

3 THE
L4: Memory Hierarchy | u gfgl ll}/'l'EAR[»-S[[TY

THE
u UNIVERSITY
OF UTAH

1/25/12

General Approach

0. Provided

a. Input file
b. Sample output file
¢. CPU implementation

1 Structure
a. Compare CPU version and GPU version output [compareInt]
b. Time performance of two GPU versions (see 2 & 3 below) [EventRecord]

2. GPU version 1 (partial credit if correct)
implementation using global memory

3. GPU version 2 (highest points to best performing versions)
use memory hierarchy optimizations from previous, current and Monday's lecture

4. Extra credit: Try two different block / thread decompositions. What happens if you use
more threads versus more blocks? What if you do more work per thread? Explain your
choices in a README file.

Handin using the following on CADE machines, where probfile includes all files

“handin ¢s6235 lab2 <probfile>”

THE
u UNIVERSITY
OF UTAH

Overview of Lecture

+ Review: Tiling for computation partitioning
and fixed capacity storage
* Now for constant memory and registers

* Quick look at texture memory

+ First bandwidth optimization: global
memory coalescing

* Reading:
— Chapter 5, Kirk and Hwu book

— Or, http://courses.ece.illinois.edu/ece498/al/
textbook/Chapter4-CudaMemoryModel.pdf

THE
u UNIVERSITY
OF UTAH

56235 L5: Memory Hierarchy, i 6

Targets of Memory Hierarchy
Optimizations

*+ Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

* Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should b% less ‘rhag arF:Ticipa'red gain9 PYing

56235 L5: Memory Hierarchy, Il 7

THE
u UNIVERSITY
OF UTAH

Constant Memory Example

+ Signal recognition example:

— Apply input signal (a vector) to a set of
precomputed transform matrices

— Compute M|V, M,V, .., M,V
__constant__ float d_signalVector[M];
__device__ float R[N][M];

__host__ void outerApplySignal () { __global__ void ApplySignal (float * d_mat,
float *h_inputSignal; int M) {
dim3 dimGrid(N); float result = 0.0; /* register */
dim3 dimBlock(M);
cudaMemcpyToSymbol (d_signalVector, ~ for (i=0; j<M; j++)

h_inputSignal, M*sizeof{(float)); result += d_mat[blockldx.x][threadIdx.x][j] *

// input matrix is in d_mat d_signalVector[j];
ApplySignal<<<dimGrid,dimBlock>>> R[blockldx.x][threadldx.x] = result;

(d_mat, M);
THE
UUNIVERSITY
OF UTAH

}

56235 13: Memory Hierarchy, 1

1/25/12

More on Constant Cache

+ Example from previous slide
— All threads in a block accessing same
element of signal vector
— Brought into cache for first access, then
latency equivalent to a register access

Instruction

Unit LD signalVector([j]

Constant Cache

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Additional Detail

* Suppose each thread accesses different
data from constant memory on same
instruction
— Reuse across threads?

« Consider capacity of constant cache and locality

« Code transformation needed? -- tile for
constant memory, constant cache

* Cache latency proportional to number of
accesses in a warp

—No reuse?
+ Should not be in constant memory.

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

"Tiling" for Registers
+ A similar technique can be used to map data to
registers

+ Unroll-and-jam

 Unroll outer loops in a nest and fuse together
resulting inner loops

+ Equivalent to "strip-mine"” followed by permutation
and unrolling

+ Fusion safe if dependences are not reversed
+ Scalar replacement

— May be followed by replacing array references
with scalar variables to help compiler identify
register opportunities

56235 L5: Memory Hierarchy, Il

THE
u UNIVERSITY
OF UTAH

Unroll-and-jam for matrix multiply

Tiling inner loops I and K (+permutation)

for (K = 0; K<N; K+=Ty)
for (I =0; I<N; I+=T))
for (J =0; J<N; J++)
for (KK = K; KK<min(K+T, N); KK++)
for (Il = I; ll<min(l+ T,, N); l1++)

PLJ]I0N] = PLJ]N] + MIKK][I] * N[JI[KK];

L5: Memory Hierarchy, Il

THE
12 u UNIVERSITY
OF UTAH

1/25/12

for (K = 0; K<N; K+=T,)

Now parallel computations are exposed

B . g

First, Apply Unroll-and-Jam

Unroll IT loop,T; = 4 (equiv. to
unroll&jam

for (I = 0; I<N; I+=4)
for (. ; J<N; J++)
for (KK = K; KK<min(K+Ty, N); KK++)
P[] = PLII[I] + MIKK][H] * N[JJ[KK];

PINI+1] = PLIJ[I1+1] + MIKK][I+1] * NIJJKK];
PUINI+2] = PL[I1+2] + MIKK][I1+2] * N[JJKK];
PII+3] = PLI][11+3] + MIKK][I1+3] * NJ][KK];

O~ (M

* —
THE

13 UUNIVERSIT\'
OF UTAH

VA

— + +

L5: Memory Hierarchy, Il

Now can expose registers using scalar
replacement (or simply unroll kk loop)

Scalar Replacement: Replace accesses to P with scalars
for (K = 0; K<N; K+=Ty)
for (I = 0; I<N; I+=4)
for (J =0; J<N; J++) {
PO = P[J][I]; P1 = P[I][I+1]; P2 = P[J][1+2,J]; P3 = P[J][1+3];
for (KK = K; KK<min(K+Ty, N); KK++) {
PO = PO + M[KK][II] * N[J][KK];
P1=P1 + M[KK][lI+1] * N[J][KK];
P2 = P2 + M[KK][II+2] * N[J][KK];
P3 = P3 + M[KK][II+3] * N[J][KK];

}
P = PO; PLII+1] = P1; PI+2] = P2; P[J][1+3] = P3;

Now P accesses can be mapped to “named registers”

L5: Memory Hierarchy, Il 14

THE
UUNIVERSITY
OF UTAH

€S6235

Overview of Texture Memory

Recall, texture cache of read-only data
Special protocol for allocating and copying to GPU
— fexture<Type, Dim, ReadMode> texRef;
+ Dim: 1, 2 or 3D objects
Special protocol for accesses (macros)
— tex2D(<name> dim1,dim2);
In full glory can also apply functions to textures

Wereiting possible, but unsafe if followed by read in
same kernel

15 THE —
L5: Memory Hierarchy Il u 8';’ IL\I/TE’{l}ilT\

Using Texture Memory (simpleTexture project
from SDK)

cudaMalloc((void**) &d_data, size);

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, O,
cudaChannelFormatKindFloat);

cudaArray* cu_array;

cudaMallocArray(&cu_array, &channelDesc, width, height);

cudaMemcpy ToArray(cu_array, O, 0, h_data, size, cudaMemcpyHostToDevice);

// set texture parameters

tex.addr \ode[0] = tex.addr Mode[1] = cudaAddressModeWrap;

tex.filterMode = cudaFilterModeLinear; tex.normalized = true;

cudaBindTextureToArray(tex,cu_array, channelDesc);

// execute the kernel

transformKernel«« dimGrid, dimBlock, O »>(d_data, width, height, angle);

Kernel function:
// declare texture reference for 2D float texture
texture«float, 2, cudaReadModeElement Type> tex;

.. = tex2D(tex,i,j);

€s6235
OF UTAH

16 T ——
L5: Memory Hierarchy Il u UNIVERSITY

1/25/12

When to use Texture (and Surface) Memory

(From 5.3 of CUDA manual) Reading device memory through
texture or surface fetching present some benefits that can make
it an advantageous alternative to reading device memory from
global or constant memory:

+ If memory reads to global or constant memory will not be
coalesced, higher bandwidth can be achieved providing that
there is locality in the fexture fetches or surface reads (this is
less likely for devices of compute capability 2.x given that global
memory reads are cached on these devices);

Addressing calculations are performed outside the kernel by
dedicated units:

+ Packed data may be broadcast to separate variables in a single
operation;

+ 8-bit and 16-bit integer input data may be optionally converted
to 32-bit floating-point values in the range [0.0, 1.0] or [-1.0, 1.0]
(see Section 3.2.4.1.1).

L5: Memory Hierarchy, Il 17

THE
u UNIVERSITY
OF UTAH

Memory Bandwidth Optimization

+ Goal is to maximize utility of data for each data
transfer from global memory
+ Memory system will “coalesce" accesses for a
collection of consecutive threads if they are within an
aligned 128 byte portion of memory (from half-warp
or warp)
+ Implications for programming:
— Desirable to have consecutive threads in tx
dimension accessing consecutive data in memory
— Significant performance impact, but Fermi data
cache makes it slightly less important

L5: Memory Hierarchy, Il 18

THE
u UNIVERSITY
OF UTAH

Introduction to Global Memory Bandwidth:
Understanding Global Memory Accesses

Memory protocol for compute capability
1.2* (CUDA Manual 5.1.2.1)

+ Start with memory request by smallest humbered
thread. Find the memory segment that contains the
address (32, 64 or 128 byte segment, depending on
data type)

+ Find other active threads requesting addresses
within that segment and coalesce

+ Reduce transaction size if possible
+ Access memory and mark threads as “inactive”

+ Repeat until all threads in half-warp are serviced
*Includes Tesla and GTX platforms

19
5 15: M Hierarchy, lll
56235 L5 Memory Hierarchy I

THE
u UNIVERSITY
OF UTAH

Protocol for most systems (including labé
machines) even more restrictive

* For compute capability 1.0 and 1.1
— Threads must access the words in a
segment in sequence
— The kth thread must access the kth word

56235 L5: Memory Hierarchy, i 20

THE
u UNIVERSITY
OF UTAH

1/25/12

Memory Layout of a Matrix in C
Access n!m

My My Mpy Mgy

direction in
Kernel
code M;z My, My, Mg,

Mys Mis My My,

Time Period 1 Time Period 2
T, T, Ty T (T, T, T3 Ty

ARRARANA

21 THE
L5: Memory Hierarchy Il u gfgl ll}/TEAR[»—S[[TY

L5: Memory Hierarchy, Il

Memory Layout of a Matrix in C

Access
direction in Moy My My, My,
Kernel
code Moz Mi2 Mz M;,

M(\.S MLS M2‘3 MSL‘»
Time Period 2
T, T, T. T,

Tifne Period 1

Ms2 Moz Mys My5 My

L5: Memory Hierarchy, Il L5: Memory Hierarchy Il

THE
u UNIVERSITY
OF UTAH

Summary of Lecture

« Tiling transformation
— For computation partitioning
— For limited capacity in shared memory
—For registers

* Matrix multiply example
* Unroll-and-jam for registers
+ Bandwidth optimization

— Global memory coalescing

"THE
cs6235 L5: Memory Hierarchy, Il 23 UUNIVERS[TY
OF UTAH

Next Time

+ Complete bandwidth optimizations
— Shared memory bank conflicts
— Bank conflicts in global memory (briefly)

56235 L5: Memory Hierarchy, i

THE
24 U UNIVERSITY
OF UTAH

