1/25/12

L4: Memory Hierarchy Optimization IT,
Locality and Data Placement, cont.

56235 L4: Memory Hierarchy, I 1

THE
u UNIVERSITY
OF UTAH

CS6963

Overview of Lecture

Review: Where data can be stored (summary)

+ And how to get it there

Review: Some guidelines for where to store data
— Who needs fo access it?

— Read only vs. Read/Write

— Footprint of data

Slightly more detailed description of how to write
code to optimize for memory hierarchy

— More details next week

Reading:

— Chapter 5, Kirk and Hwu book

— Or, http://courses.ece.illinois.edu/ece498/al/
textbook/Chapter4-CudaMemoryModel.pdf

L4: Memory Hierarchy, Il 2

THE
u UNIVERSITY
OF UTAH

Targets of Memory Hierarchy
Optimizations

*+ Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

* Maximize memory bandwidth

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

* Manage overhead

— Cost of performing optimization (e.g., copying)
should b% less ‘rhag arF:Ticipa'red gain9 PYing

56963 L4: Memory Hierarchy, I 3

THE
u UNIVERSITY
OF UTAH

Today'’s
Lecture

CS6963

<" Optimizations to increase memory bandwidth.

Optimizing the Memory Hierarchy on
GPUs, Overview

Device memory access times non-uniform so
data placement significantly affects
performance.

+ But controlling data placement may require
additional copying, so consider overhead.

Tdea: maximize utility of each memory access.
+ Coalesce global memory accesses

* Avoid memory bank conflicts to increase memory
access parallelism

 Align data structures to address boundaries

THE
u UNIVERSITY
OF UTAH

L4: Memory Hierarchy, I 4

1/25/12

Reuse and Locality

+ Consider how data is accessed
— Data reuse:
+ Same data used multiple times
* Intrinsic in computation
— Data locality:
* Data is reused and is present in “fast memory"
+ Same data or same data transfer
+ If a computation has reuse, what can we do to get
locality?
+ Appropriate data placement and layout
+ Code reordering transformations

56963 L4: Memory Hierarchy, I 5

THE
u UNIVERSITY
OF UTAH

Recall: Shared Memory

+ Common Programming Pattern (5.1.2
of CUDA manual)
— Load data into shared memory
— Synchronize (if necessary)
— Operate on data in shared memory
— Synchronize (if necessary)
— Write intermediate results to global
memory
— Repeat until done

Shared
memory

56963 L4: Memory Hierarchy, I

THE
u UNIVERSITY
OF UTAH

Mechanics of Using Shared Memory

+ __shared__ type qualifier required

+ Must be allocated from global/device
function, or as "extern”

. __global__ void compute2() {
* Examp Ies . __shared__float d_s_array[M];
extern __shared__float d_s_array[]; // create or copy from global memory
d_s_array[jl = ...;
/* a form of dynamic allocation */ //synchronize threads before use
/* MEMSIZE is size of per-block */ __syncthreads();

/* shared memory*/
__host__ void outerCompute() {
compute<<<gs,bs>>>();

... =d_s_array[x]; // now can use any element
// more synchronization needed if updated

__global__ void compute() {
d_s_array[i] = ...;

// may write result back to global memory

d_g_array[j] = d_s_array[j];
THE
u UNIVERSITY
OF UTAH

}
56963 L4: Memory Hierarchy, I 7

Loop Permutation:
A Reordering Transformation

Permute the order of the loops to modify the traversal order

for (i= 0; i<3; i++)
for (3§=0; 3j<6; j++)

for (j=0; j<6; j++)
for (i= 0; i<3; i++)

A[i] [J+1]1=A[i] [J]1+B[]]; A[i] [J+1]1=A[i] [JI1+B[]];

new traversal order!

INAVAVAVA

i i
Which one is better for row-major storage?

s THE —
€56963 L4: Memory Hierarchy | u 8‘;’ [L},TE,{%IT\

1/25/12

Safety of Permutation

« Intuition: Cannot permute two loops i and j in a loop
nest if doing so changes the relative order of a read
and write or two writes to the same memory location

for (i= 0; i<3; i++) for (i= 0; i<3; i++)
for (j=0; j<6; j++) for (j=0; j<6; j++)
A[i+1][j-1]=A[i][3]]
+B[j]

A[i] [J+1]1=A[i][J]+B[]];

+ Ok to permute?

9
CS6963 L4: Memory Hierarchy |

Tiling (Blocking):
Another Loop Reordering Transformation

+ Tiling reorders loop iterations to bring
iterations that reuse data closer in time

N > =
> s s Y =,

x

-
L .
F>——— > S
F——s— & "

J J

THE
10 UUN[VERSITY
OF UTAH

56963 L4: Memory Hierarchy, I

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)

D[i] = D[i] + B[j]l[i]’

Strip for (j=1; j<M; j++)
mine for (ii=1l; ii<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)
D[i] = D[i] +B[j][i];

ii<N; ii+=s)
Permute 5 J<M; §++)

(Seq. view) for (i=ii; i<min(ii+s-1,N); i++)

D[i] = D[i] + B[Jj]I[i];

56963 L4: Memory Hierarchy, I

Legality of Tiling

« Tiling is safe only if it does not change
the order in which memory locations are
read/written
— We'll talk about correctness after memory

hierarchies

+ Tiling can conceptually be used to
perform the decomposition into threads
and blocks
— We'll show this later, too

e
La: Memory Hierarchy, 12 u UNIVERSITY
OF UTAH

1/25/12

A Few Words On Tiling

+ Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations

— Between grids if total data exceeds global memory
capacity

— To partition computation across blocks and threads

— Across thread blocks if shared data exceeds shared
memory capacity

— Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still
exceeds shared memory capacity

THE
€S6963 L4: Memory Hierarchy, Il 13 u UNIVERSITY
OF UTAH

CUDA Version of Example (Tiling for
Computation Partitioning)
for (ii=1l; ii<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)

Block
& dimension

Thread
= dimension

for (j=1; j<N; j++)
D[i] = D[i] + B[j][i];

= Loop within
Thread

<<<Computel(N/s,s)>>>(d_D, d_B, N);

__global__ Computel (float *d_D, float *d_B, int N) {
int i = blockldx.x;
inti = ii*s + threadldx.x;
for (j=0; j<N; j++)
d_D[i] = d_DI[i] + d_B[*N+i];
}

L4: Memory Hierarchy, I

THE
14 u UNIVERSITY
OF UTAH

Textbook Shows Tiling for Limited
Capacity Shared Memory

« Compute Matrix Multiply using shared
memory accesses

« We'll show how to derive it using tiling

L4: Memory Hierarchy, Il 15 u UNIVERSITY
OF UTAH

Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) k

for (inti = 0; i < Width; ++i)
for (int] = 0;] < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + j];
sum+=a*b;

}
P[i * Width + j] = sum;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

THE
£CE 498AL, University of linois, Urbana-Champaign - oY Hierarchy, Il 1 u ORUTAR
OF UTAH

1/25/12

Tiled Matrix Multiply Using Thread Blocks

* One computes one square sub-
matrix P, of size BLOCK_SIZE o X
+ One thread computes one element —

of Py, ‘
+ Assume that the dimensions of M
and N are multiples of ‘

Tiling View (Simplified Code)

for (int i = O; i <« Width; ++i)

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
sum += M[iJ[k] * NIK][j1

for (int j = O; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k]

BLOCK_SIZE and square shape double b = N[k * width + j]; }
sum+=a*b; PLiI[j] = sum;
} }
PLi * Width + j] = sum;
3 }
2
Y bsize-1
B 2 L6: Memory ierarchy, 17 L4: Memory Hierarchy, 18
Let's Look at This Code Strip-Mined Code
for (int i = 0; i < Width; ++i) e Tilei for (int ii = O; ii < Width; ii+=TI) 7 Block dimensions
for (int j = O; j < Width; ++]) { e Tile j for (int i=ii; i<ii+TL; i++) b Thread dimensions
double sum = 0; e ek fnsice for (int jj=0: jj<Width; jj+=TJ) <

for (int k = 0; k < Width; ++k) {
sum += M[i1[k] * N[KI[j1:

}

P[i][j] = sum;

THE
L4: Memory Hierarchy, Il 19 U UNIVERSITY
OF UTAH

for (int = §j: < e TT o) <
double sum = 0;
for (int kk = 0; kk < Width; kk+=TK) {
for (int k = kk; k < kk+ TK; k++) & Tiling for shared
sum += MLiJ[Kk] * N[KI[j1: memory
}
P[i][j] = sum;

}

L4: Memory Hierarchy, I

THE
20 _l ' UNIVERSITY
OF UTAH

1/25/12

But this code doesn't match CUDA
Constraints

s - . - Block dimensions —

for (int ii = 0; ii < Width; ii+=TT) - must be unit stride

for (int i=ii; i<ii+TL; i++) .

for (int jj=0: jj<Width; jj+=TJ) ~

for (int j = jj: j < jj*TT: j++) { .
double sum = 0;

for (int kk = O; kk < Width; kks=TK) {

Thread dimensions —
must be unit stride

Unit Stride Tiling -
Reflect Stride in Subscript Expressions

Block dimensions —

for (int ii = 0; ii < Width/TL; ii++) must be unit stride
for (int i=0; i< TL; i++) ¢
for (int jj=0; jj<Width/TJ: jj++)] Thread dimensions —
-—

for (int j = 0; j< TJ: j++){
double sum = 0;
for (int kk = 0; kk < Width; kk+=TK) {

must be unit stride

for (int k = kk; k < kk+TK; k++) ———— Tiling for shared for (int k = Kk; k < kk+TK: k++) <] Tiling for shared
sum += MLiJ[K] * N[KI[j1: memory sum += MLIi*TI+][K] * N[K]I[jj* TI+jL memory,
} no need to change
PLiILj] = sum: PLIi* TT+i[jj* TT+j] = sum;
} ¥
Can we fix this?
L4: Memory Hierarchy, Il 21 L4: Memory Hierarchy, Il 22
OF UTAH OF UTAH
What Does this Look Like in CUDA What Does this Look Like in CUDA
#define TI 32 #define TI 32
#define TJ 32 #define TJ 32
dim3 dimGrid(Width/TI, Width/TJ); Block and thread #define TK 32

dim3 dimBlock(TL,TJ): loops disappear

matMult<««<dimGrid,dimBlock>>>(M,N P);

__global__ matMult(float *M, float *N, float *P) {
ii = blockIdx.x; jj = blockIdx.y;
i = threadIdx.x; j = threadIdx.y;

double sum = 0; Tiling for shared

memory,

Tor (int kKk'= 07 Kk < WidTh; Kk+=TK) { next slides

for (int k = kk: k < kk+TK: k++)
sum += M[(i* TI+i)*Width+k] *
N[k*Width+jj*TJ+j1;

—

Array accesses to global memory
are “linearized”

PLGi* TI+iY*Widths|* TT+j] = sum:

} it
L4: Memory Hierarchy, Il 23 U UNIVERSITY
OF UTAH

__global__ matMult(float *M, float *N, float *P) {
ii = blockIdx.x; jj = blockIdx.y:
i = threadIdx.x; j = threadIdx.y:
__shared__ Ms[TI][TK], Ns[TK][TT]:
double sum = 0;

for (int kk = 0; kk < Width; kk+=TK) { Tiling for shared

Ms[jI[i] = M(i*TI+i)*Width+ TT*jj+j+kk]; memory
Ns[j1[i] = N[(ii* TL+i+kk)*Width+TT*jj+j1; D
__syncthreads();

for (int k = kk; k < kk+TK; k++)
sum += Ms[k%TKI[i] * Ns[jI[k%TK];
__synchthreads();

PLGi* TI+i)*Width+jj* TT+j] = sum;

} L4: Memory Hierarchy, I

THE
24 u UNIVERSITY
OF UTAH

1/25/12

CUDA Code - Kernel Execution
Configuration
// Setup the execution configuration
dim3 dimBlOCk(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(N.width / dimBlock.x,
M.height / dimBlock.y):

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

L4: Memory Hierarchy, I
ECE 498AL, University of lllinois, Urbana-Champaign emory Hierarchy, 25

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

CUDA Code - Kernel Overview

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix

// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N

// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {
code from the next few slides };

L4: Memory Hierarchy, Il 26

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix (M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix (N, bx, m);

_ shared float Ms[BLOCK_ SIZE] [BLOCK SIZE];
_ shared float Ns[BLOCK SIZE][BLOCK SIZE];

// each thread loads one element of the sub-matrix

Ms[ty] [tx] = GetMatrixElement (Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty] [tx] = GetMatrixElement (Nsub, tx, ty);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of llinois, Urbana-Champaign L4 Memory Hierarchy, il 27

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are
// before starting the computation

__syncthreads () ;

// each thread computes one element of the block
for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads () ;

L4: Memory Hierarchy, I 28

loaded

sub-matrix

OF UTAH

1/25/12

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P
Matrix Psub = GetSubMatrix (P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement (Psub, tx, ty, Pvalue);
This code should run at about 150 Gflops on a
GTX or Tesla.

State-of-the-art mapping (in CUBLAS 3.2 on
C2050) yields just above 600 Gflops. Higher on

GTX480. T 2
OF UTAH

Derivation of code in text

+ TI=TJ=TK="TILE_WIDTH"
+ All matrices square, Width x Width
+ Copies of M and N in shared memory
- TILE_WIDTH x TILE_WIDTH
+ “Linearized" 2-d array accesses:
a[i][j] is equivalent to a[i*Row + j]

+ Each SM computes a “tile" of output matrix P from a block of

consecutive rows of M and a block of consecutive columns of N

— dim3 Grid (Width/ TILE_WIDTH, Width/ TILE_WIDTH);

~ dim3 Block (TILE_WIDTH, TILE_WIDTH)

+ Then, location P[i][j] corresponds to
P [by* TILE_WIDTH+ty] [bx*TILE_WIDTH+tx] or

P[Row][Col]
» [V
OF UTAH

L5: Memory Hierarchy, Il

Final Code (from text, p. 87)

__global__ void MatrixMulKernel (float *Md, float *Nd, float *Pd, int Width) {

1. _shared__float Mds [TILE_WIDTH] [TILE_WIDTH];

2. __shared__float Nds [TILE_WIDTH] [TILE_WIDTH];

3&4. int bx = blockldx.x; int by = blockldx.y; int tx = threadldx.x; int ty = threadldx.y;
INdentify the row and column of the Pd element to work on

58&6. intRow=by*TILE_WIDTH +ty; intCol=bx* TILE_WIDTH +tx;

7. float Pvalue = 0;

II'Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m=0; m < Width / TILE_WIDTH; ++m) {

Il Collaborative (parallel) loading of Md and Nd tiles into shared memory

9. Mds [ty] [tx] = Md [Row*Width + (m*TILE_WIDTH + tx)};

10. Nds [ty] [tx] = Nd [(m*TILE_WIDTH + ty)*Width + Col];

1. __syncthreads(); /I make sure all threads have completed copy before calculation

12. for (intk = 0; k < TILE_WIDTH; ++k) // Update Pvalue for TKxTK tiles in Mds and Nds

13. Pvalue += Mds [ty] (k] * Nds K] [t;

14. __syncthreads(); Il make sure calculation complete before copying next ile
} /' mloop

15. Pd [Row*Width + Col] = Pvalue;

THE
L5: Memory Hierarchy, Il 31 u UNIVERSITY
OF UTAH

Matrix Multiply in CUDA

+ Imagine you want to compute extremely
large matrices.

— That don't fit in global memory

* This is where an additional level of tiling
could be used, between grids

THE
56963 L4: Memory Hierarchy, Il 32 u UNIVERSITY
OF UTAH

1/25/12

Summary of Lecture

+ How to place data in shared memory
* Introduction to Tiling transformation
— For computation partitioning
— For limited capacity in shared memory
* Matrix multiply example

THE
56963 L4: Memory Hierarchy, Il 33 u UNIVERSITY
OF UTAH

Next Time

+ Complete this example
— Also, registers and texture memory

* Reasoning about reuse and locality
* Introduction to bandwidth optimization

56963 L4: Memory Hierarchy, I

THE
34 UUNIVERSITY
OF UTAH

