1/25/12

L3: Memory Hierarchy Optimization I,
Locality and Data Placement

56235 L3: Memory Hierarchy, 1 u {JH[EJIVE RSITY
OF UTAH

CS6235

Administrative

Next assignment due Friday, 5 PM

— Use handin program on CADE machines
* “handin €56235 lab1 <probfile>"

TA: Preethi Kotari

- Email: preethik@cs.utah.edu

- Office hours: Tu-Th, 2-3PM, MEB 3423
Mailing list

— CS6235s12-discussion@list.eng.utah.edu

* Please use for all questions suitable for the whole class
+ Feel free to answer your classmates questions!

13: Memory Hierarchy, 1 U{JHIEIIVERSITY
OF UTAH

Overview of Lecture

* Where data can be stored
* And how to get it there
+ Some guidelines for where to store data
— Who needs to access it?
— Read only vs. Read/Write
— Footprint of data
. High level description of how to write code to
optimize for memory hierarchy
— More details Wednesday and hext week
* Reading:
— Chapter 5, Kirk and Hwu book

— Or, http://courses.ece.illinois.edu/ece498/al/
textbook/Chapter4-CudaMemoryModel.pdf

56235 L3: Memory Hierarchy, 1 u {JH[EJIVE RSITY
OF UTAH

* Manage overhead

CS6235

Maximize memory bandwidth

Targets of Memory Hierarchy
Optimizations

Reduce memory latency

— The latency of a memory access is the time
(usually in cycles) between a memory request
and its completion

— Bandwidth is the amount of useful data that
can be retrieved over a time interval

— Cost of performing optimization (e.g., copying)
should bpe less ‘rhag arﬁ‘ricipa’red gc(ing PYing

L3: Memory Hierarchy, 1 U{JHIEUVERSITY
OF UTAH

1/25/12

Optimizing the Memory Hierarchy on
GPUs, Overview

Device memory access times non-uniform so
data placement significantly affects

Hardware Implementation: Memory
Architectusnz
+ The local, global, constant, and s
texture spaces are regions of
device memory (DRAM)

+ Each multiprocessor has:

Multiprocessor 2

Multiprocessor 1

Iodtav’s per‘for‘mance, — A set of 32-bit registers per
““"Q - But controlling data placement may require B g:_“cfi;fhm ¢ memory
ac!da‘.rlona.l copying, so consider overhead. . Where the shared mmory .
<" Optimizations to increase memory bandwidth. space resides i
dea: . ili h — A read-only constant cache 7 1 4
Tdea: maximize utility of each memory access. To speed up access fo the
* Coalesce global memory accesses 4 ref]‘;"s;:l"; emery spees
* Avoid memory bank conflicts to increase memory To speed up access to the
access parallelism fexture memory space
. . — Data cache (Fermi only)
* Align data structures to address boundaries
e o 13 Memay ity
Terminology Review
Reuse and Locality
+ device = 6PU = set of multiprocessors
* Multiprocessor = set of processors & shared memor . .
. Kem; - GPU program P Y + Consider how data is accessed
- — Data reuse:
+ 6rid = array of thread blocks that execute a kernel + Same data used multiple times
* Thread block = group of SIMD threads that execute « Intrinsic in computation
a kernel and can communicate via shared memory — Data locality:
Memory Location Cached Access Who * Dafa is reused and is present in “fast memory
Local Off-chip No Read/write One thread * Same dClTG.OI" same data fransfer
Shared On-chip N/A-resident | Read/write | All threads in a block * If a computation has reuse, what can we do to get
Global Off-chip No Read/write | All threads + host local lfy’)
Constant Off-chip Yes Read All threads + host + Appropriate data placement and layout
Texture Off-chip Yes Read All threads + host + Code reordering transformations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of llinois, Urbana-Champaign

THE
u UNIVERSITY
OF UTAH

13: Memory Hierarchy, 1

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

1/25/12

Access Times

+ Register - dedicated HW - single cycle
+ Constant and Texture caches - possibly single
cycle, proportional to addresses accessed by warp
+ Shared Memory - dedicated HW - single cycle if
ts"

no "bank conflicts
+ Local Memory - DRAM, no cache - *slow*
+ Global Memory - DRAM, no cache - *slow™

+ Constant Memory - DRAM, cached, 1..10s...100s of
cycles, depending on cache locality

+ Texture Memory - DRAM, cached, 1..10s..100s of
cycles, depending on cache locality

+ Instruction Memory (invisible) - DRAM, cached

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of llinois, Urbana-Champaign 13: Memory Hierarchy, 1

THE
U UNIVERSITY
OF UTAH

Data Placement: Conceptual

+ Copies from host to device go to some part of global memory
(possibly, constant or texture memory)

* How to use SP shared memory
+ Must construct or be copied from global memory by kernel program
+ How to use constant or texture cache

- Eeaﬁi—only “reused” data can be placed in constant & texture memory
Y host

+ Also, how to use registers
— Most locally-allocated data is placed directly in registers

— Even array variables can use registers if compiler understands
access patterns

— Can allocate “superwords” to registers, e.g., float4
— Excessive use of registers will “spill” data to local memory
*+ Local memory
— Deals with capacity limitations of registers and shared memory
— Eliminates worries about race conditions
— .. but SLOW

Cs6235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Data Placement: Syntax

+ Through type qualifiers
— __constant__, __shared__, _ local___,
__device___
+ Through cudaMemcpy calls
— Flavor of call and symbolic constant designate
where to copy
+ Implicit default behavior
— Device memory without qualifier is global memory
— Host by default copies to global memory

— Thread-local variables go into registers unless
capacity exceeded, then local memory

56235 13: Memory Hierarchy, 1

THE
U UNIVERSITY
OF UTAH

Language Extensions: Variable Type Qualifiers

Memory | Scope Lifetime

ca int Localvar; local thread thread

int SharedvVar; shared | block block
ce int GlobalVar; global grid | application
int ConstantVar; | constant | grid | application

* device s optional when used with
__local , shared ,or
___constant

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 13- Memory Hierarchy, 1
ECE 498AL, University of lllinois, Urbana-Champaign lemory Hierarchy,

THE
u UNIVERSITY
OF UTAH

1/25/12

Variable Type Restrictions

* Pointers can only point to memory
allocated or declared in global memory:
— Allocated in the host and passed to the

kernel:
__global void KernelFunc (float*
ptr)

— Obtained as the address of a global
variable: float* ptr = &GlobalVar;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of llinois, Urbana-Champaign ~ L3: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Rest of Today's Lecture

* Mechanics of how to place data in
shared memory and constant memory
+ Tiling transformation to reuse data
within
— Shared memory
— Data cache (Fermi only)

13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Now Let's Look at Shared Memory

+ Common Programming Pattern (5.3 of
CUDA 4 manual)
— Load data into shared memory
— Synchronize (if necessary)
— Operate on data in shared memory
— Synchronize (if necessary)

— Write intermediate results to global
memory

— Repeat until done

Shared
memory

56235 13: Memory Hierarchy, 1

Mechanics of Using Shared Memory

+ __shared__ type qualifier required

* Must be allocated from global/device
function, or as “extern”

R E I . __global__ void compute2() {
XGmP es: _ shared__ float d_s_array[M];
extern __shared__float d_s_array[]; // create or copy from global memory
d_s_array[j] = ...;
/* a form of dynamic allocation */ //synchronize threads before use
/* MEMSIZE is size of per-block */ __syncthreads();

/* shared memory*/
__host__ void outerCompute() {
compute<<<gs,bs>>>();

... =d_s_array[x]; // now can use any element
// more synchronization needed if updated

// may write result back to global memory

d_g_array[j] = d_s_array[j];
THE
u UNIVERSITY
OF UTAH

__global__ void compute() {
d_s_array[i] = ...;

56235 L3: Memory Hierarchy, 1

1/25/12

Reuse and Locality

+ Consider how data is accessed
— Data reuse:
+ Same data used multiple times
* Intrinsic in computation
— Data locality:
* Data is reused and is present in “fast memory"
+ Same data or same data transfer
+ If a computation has reuse, what can we do to get
locality?
+ Appropriate data placement and layout
+ Code reordering transformations

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Temporal Reuse in Sequential Code

* Same data used in distinct iterations I and
I

for (i=1l; i<N; i++)
for (j=1; jJ<N; j++)

A[jl= A[JI+A[j+1]+A[j-1]

« A[j] has self-temporal reuse in loop i

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Spatial Reuse (Ignore for now)

+ Same data transfer (usually cache line) used in
distinct iterations Tand T'
for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[jl= A[jl+A[J+1]+A[]j-1]1;

- A[J] has self-spatial reuse in loop j

* Multi-dimensional array note: C arrays are
stored in row-major order

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Group Reuse

+ Same data used by distinct references

for (i=1; i<N; i++)
for (j=1; jJ<N; j++)

A[jl= A[JI+A[j+1]+A[F-1];

+ A[j],A[j+1] and A[j-1] have group reuse (spatial and temporal) in
loop 3

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

1/25/12

Tiling (Blocking):
Another Loop Reordering Transformation

« Tiling reorders loop iterations to bring
iterations that reuse data closer in time

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)

D[i] = D[i] + B[Jj]l[i];

Strip for (j= J<M; j++)
mine for (ii=1 i<N; ii+=s)
for (i=ii; i<min(ii+s-1,N); i++)
D[i] = D[i] +B[j]l[il;

for (ii=1; ii<N; ii+=s)

Permute ;3H+)

i<min(ii+s-1,N); i++)
D[i] = D[i] + B[j][i];

€56235 L3: Memory Hierarchy, 1 UHIIEHVERSITY
OF UTAH

Legality of Tiling

« Tiling is safe only if it does not change
the order in which memory locations are
read/written
— We'll talk about correctness after memory

hierarchies

+ Tiling can conceptually be used to
perform the decomposition into threads
and blocks
— We'll show this later, too

13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

A Few Words On Tiling

+ Tiling can be used hierarchically to compute
partial results on a block of data wherever there
are capacity limitations
— Between grids if total data exceeds global memory

capacity
— Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

— Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity
or (as in example) data in shared memory for block still

exceeds shared memory capacity
u UNIVERSITY
OF UTAH

56235 13: Memory Hierarchy, 1

1/25/12

Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) k

for (inti = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + JJ;
sum+=a*b;

}
P[i * Width + j] = sum;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

L3: Memory Hierarchy, 1
ECE 498AL, University of lllinois, Urbana-Champaign emory Hierarchy,

THE
u UNIVERSITY
OF UTAH

Tiled Matrix Multiply Using Thread Blocks

* One computes one square sub-
matrix P, of size BLOCK_SIZE e X
+ One thread computes one element —

of Py ‘
* Assume that the dimensions of M

and N are multiples of
BLOCK_SIZE and square shape

bsize-1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

THE
u UNIVERSITY
OF UTAH

ECE 498AL, University of llinois, Urbana-Champaign L3: Memory Hierarchy, 1

CUDA Code - Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlOCk(BLOCK_SIZE, BLOCK_SIZE) ;

dim3 dimGrid(N.width / dimBlock.x,
M.height / dimBlock.y):

For very large N and M dimensions, one

will need to add another level of blocking
and execute the second-level blocks
sequentially.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

L3: Memory Hierarchy, 1
ECE 498AL, University of lllinois, Urbana-Champaign emory Hierarchy,

THE
u UNIVERSITY
OF UTAH

CUDA Code - Kernel Overview

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N

// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {
code from the next few slides };

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

L3: Memory Hierarchy, 1
£CE 498AL, University of llinois, Urbana-Champaign emory Hierarchy,

THE
NIVERSITY
F UTAH

1/25/12

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix (M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix (N, bx, m);

_ shared float Ms[BLOCK_ SIZE] [BLOCK SIZE];
_ shared float Ns[BLOCK SIZE][BLOCK SIZE];

// each thread loads one element of the sub-matrix

Ms[ty] [tx] = GetMatrixElement (Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty] [tx] = GetMatrixElement (Nsub, tx, ty);

THE
u UNIVERSITY
OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 .
ECE 498AL, University of Illinois, Urbana-Champaign -3+ Memory Hierarchy, 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads () ;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads () ;

13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P
Matrix Psub = GetSubMatrix (P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement (Psub, tx, ty, Pvalue);

This code should run at about 150 Gflops on a
GTX or Tesla.

State-of-the-art mapping (in CUBLAS 3.2 on
C2050) yields just above 600 Gflops. Higher on
GTX480.

13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

Matrix Multiply in CUDA

+ Imagine you want to compute extremely
large matrices.

— That don't fit in global memory

* This is where an additional level of tiling
could be used, between grids

56235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

1/25/12

Summary of Lecture

+ How to place data in constant memory

and shared memory

* Introduction to Tiling transformation

* Matrix multiply example

56235 13: Memory Hierarchy, 1

THE
U UNIVERSITY
OF UTAH

Next Time

+ Complete this example
— Also, registers and texture memory

* Reasoning about reuse and locality
* Introduction to bandwidth optimization

Cs6235 13: Memory Hierarchy, 1

THE
u UNIVERSITY
OF UTAH

