
1/11/12

1

CS6963	

L2: Hardware Execution Model and
Overview

January 11, 2012

L2:	 Hardware	 Overview	

Administrative
•  First assignment out, due next Friday at 5PM

–  Use handin on CADE machines to submit
•  “handin cs6235 lab1 <probfile>”
•  The file <probfile> should be a gzipped tar file of the

CUDA program and output
–  Can implement on CADE machines, see provided

makefile
•  Grad lab is MEB 3161, must be sitting at machine
•  Partners for people who have project ideas
•  TA: Preethi Kotari, preethik@cs.utah.edu
•  Mailing lists now visible:

–  cs6235s12@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

CS6235	 L2:	 Hardware	 Overview	

Outline
•  Execution Model
•  Host Synchronization
•  Single Instruction Multiple Data (SIMD)
•  Multithreading
•  Scheduling instructions for SIMD, multithreaded

multiprocessor
•  How it all comes together

•  Reading:
 Ch 3 in Kirk and Hwu,

 http://courses.ece.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

 Ch 4 in Nvidia CUDA Programming Guide
CS6235	 L2:	 Hardware	 Overview	

What is an Execution Model?
•  Parallel programming model

–  Software technology for expressing parallel algorithms that
target parallel hardware

–  Consists of programming languages, libraries, annotations, …
–  Defines the semantics of software constructs running on

parallel hardware
•  Parallel execution model

–  Exposes an abstract view of hardware execution,
generalized to a class of architectures.

–  Answers the broad question of how to structure and name
data and instructions and how to interrelate the two.

–  Allows humans to reason about harnessing, distributing, and
controlling concurrency.

•  Today’s lecture will help you reason about the target
architecture while you are developing your code
–  How will code constructs be mapped to the hardware?

CS6235	 L2:	 Hardware	 Overview	

1/11/12

2

NVIDIA GPU Execution Model
I. SIMD Execution of

warpsize=M threads (from
single block)
–  Result is a set of instruction

streams roughly equal to #
blocks in thread divided by
warpsize

II. Multithreaded Execution
across different instruction
streams within block
–  Also possibly across different

blocks if there are more blocks
than SMs

III. Each block mapped to
single SM
–  No direct interaction across

SMs

Device	

Mul*processor	 N	
Mul*processor	 2	

Mul*processor	 1	

Device	 memory	

Shared	 Memory	

Instruc*on	
Unit	

Processor	 1	

Registers	

…	
Processor	 2	

Registers	

Processor	 M	

Registers	

Constant	
Cache	

Texture	
Cache	

CS6235	 L2:	 Hardware	 Overview	

Data	 Cache,	 Fermi	 only	

SIMT = Single-Instruction Multiple Threads

•  Coined by Nvidia
•  Combines SIMD execution within a

Block (on an SM) with SPMD execution
across Blocks (distributed across SMs)

•  Terms to be defined…

CS6235	 L2:	 Hardware	 Overview	

L2:	 Hardware	 Overview	

CUDA Thread Block Overview
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 512 concurrent threads
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread id numbers within
block
–  Thread program uses thread id to select

work and address shared data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot
cooperate
–  Each block can execute in any order

relative to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

CS6235	

Calling a Kernel Function –
Thread Creation in Detail

•  A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

•  Any call to a kernel function is asynchronous from CUDA
1.0 on

•  Explicit synchronization needed for blocking continued
host execution (next slide)

L2:	 Hardware	 Overview	

Only for data that is not statically allocated

CS6235	

1/11/12

3

Host Blocking: Common Examples

•  How do you guarantee the GPU is done and results are ready?
•  Timing example (excerpt from simpleStreams in CUDA SDK):

•  A bunch of runs in a row example (excerpt from transpose in
CUDA SDK)

CS6235	 L2:	 Hardware	 Overview	

cudaEvent_t start_event, stop_event;
cudaEventCreate(&start_event);
cudaEventCreate(&stop_event);
cudaEventRecord(start_event, 0);
 init_array<<<blocks, threads>>>(d_a, d_c, niterations);
 cudaEventRecord(stop_event, 0);
 cudaEventSynchronize(stop_event);
 cudaEventElapsedTime(&elapsed_time, start_event, stop_event);

for (int i = 0; i < numIterations; ++i) {
 transpose<<< grid, threads >>>(d_odata, d_idata, size_x, size_y);
}
cudaThreadSynchronize();

CS6235	 L2:	 Hardware	 Overview	

Predominant Control Mechanisms:
Some definitions

Name Meaning Examples

Single Instruction,
Multiple Data
(SIMD)

A single thread of
control, same
computation applied
across “vector” elts

Array notation as in
Fortran 95:
A[1:n] = A[1:n] + B[1:n]
Kernel fns w/in block:
compute<<<gs,bs,msize>>>

Multiple Instruction,
Multiple Data
(MIMD)

Multiple threads of
control, processors
periodically synch

OpenMP parallel loop:
forall (i=0; i<n; i++)
Kernel fns across blocks
compute<<<gs,bs,msize>>>

Single Program,
Multiple Data
(SPMD)

Multiple threads of
control, but each
processor executes
same code

Processor-specific code:
if ($threadIdx.x == 0) {
}

Streaming Multiprocessor (SM)

•  Streaming Multiprocessor (SM)
–  8 Streaming Processors (SP)
–  2 Super Function Units (SFU)

•  Multi-threaded instruction dispatch
–  1 to 512 threads active
–  Shared instruction fetch per 32 threads
–  Cover latency of texture/memory loads

•  20+ GFLOPS
•  16 KB shared memory
•  DRAM texture and memory access

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

CS6235	 L2:	 Hardware	 Overview	

I. SIMD

•  Motivation:
– Data-parallel computations map well to

architectures that apply the same
computation repeatedly to different data

– Conserve control units and simplify
coordination

•  Analogy to light switch

CS6235	 L2:	 Hardware	 Overview	

1/11/12

4

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0	
InstrucDon	

Unit	 P!	 PM-‐1	

Reg	

...	

Memory	

Reg	 Reg	

CS6235	 L2:	 Hardware	 Overview	

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0	
InstrucDon	

Unit	 P!	 PM-‐1	
...	

Memory	

Reg	 Reg	 Reg	

LDC	 0,	 &(dout+	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 threadIdx.x)	

threadIdx.x	 threadIdx.x	

+	 +	 +	

&dout	 &dout	 &dout	

Each	 “core”	
iniDalizes	 data	
from	 addr	
based	 on	 its	

own	 threadIdx	

CS6235	 L2:	 Hardware	 Overview	

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0	
InstrucDon	

Unit	 P!	 PM-‐1	
...	

Memory	

Reg	 Reg	 Reg	

/*	 int	 i=0;	 */	
LDC	 0,	 R3	

Each	 “core”	
iniDalizes	 its	
own	 R3	

0	 0	 0	

CS6235	 L2:	 Hardware	 Overview	

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0	
InstrucDon	

Unit	 P!	 PM-‐1	

Reg	

...	

Memory	

Reg	 Reg	 /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO	

Each	 “core”	
performs	 	 same	
operaDons	 from	
its	 own	 registers	

Etc.	

CS6235	 L2:	 Hardware	 Overview	

1/11/12

5

CS6235	

Overview of SIMD Programming
•  Vector architectures
•  Early examples of SIMD supercomputers
•  TODAY Mostly

–  Multimedia extensions such as SSE-3
–  Graphics and games processors (example, IBM Cell)
–  Accelerators (e.g., ClearSpeed)

•  Is there a dominant SIMD programming model?
–  Unfortunately, NO!!!

•  Why not?
–  Vector architectures were programmed by scientists
–  Multimedia extension architectures are programmed

by systems programmers (almost assembly language!)
or code is automatically generated by a compiler

–  GPUs are programmed by games developers (domain-
specific)

–  Accelerators typically use their own proprietary tools
L2:	 Hardware	 Overview	 CS6235	

Aside: Multimedia Extensions like SSE
•  COMPLETELY DIFFERENT ARCHITECTURE!
•  At the core of multimedia extensions

–  SIMD parallelism
–  Variable-sized data fields:

 Vector length = register width / type size

0 127
V31	

. . .

1 2 3 4 5 6 13 12 11 10 9 8 7 16 15 14

1

1

2

2

3

3

4

4

5 6 7 8

V0	

V1	

V2	

V3	

V4	

V5	

Sixteen	 8-‐bit	 Operands	

Eight	 16-‐bit	 Operands	

Four	 32-‐bit	 Operands	

Example: PowerPC AltiVec

WIDE	 UNIT	

L2:	 Hardware	 Overview	

CS6235	

Aside: Multimedia Extensions
Scalar vs. SIMD Operation

Scalar: add r1,r2,r3

1

2
+

3

r3

r2

r1

SIMD: vadd<sws> v1,v2,v3 2 3 4 1

2 3 4 1

+ + + +

4 6 8 2

v3

v2

v1

lanes	
L2:	 Hardware	 Overview	

II. Multithreading: Motivation

•  Each arithmetic instruction includes the
following sequence

•  Memory latency, the time in cycles to
access memory, limits utilization of
compute engines

Ac*vity	 Cost	 Note	

Load	 operands	 As	 much	 as	 O(100)	 cycles	 Depends	 on	 locaDon	

Compute	 O(1)	 cycles	 Accesses	 registers	

Store	 result	 As	 much	 as	 O(100)	 cycles	 Depends	 on	 locaDon	

CS6235	 L2:	 Hardware	 Overview	

1/11/12

6

Thread-Level Parallelism
•  Motivation:

–  a single thread leaves a processor under-utilized
for most of the time

–  by doubling processor area, single thread
performance barely improves

•  Strategies for thread-level parallelism:
–  multiple threads share the same large processor

reduces under-utilization, efficient resource
allocation

 Multi-Threading
–  each thread executes on its own mini processor

simple design, low interference between threads
Multi-Processing

Slide	 source:	 Al	 Davis	

CS6235	 L2:	 Hardware	 Overview	

What Resources are Shared?

•  Multiple threads are
simultaneously active (in other
words, a new thread can start
without a context switch)

•  For correctness, each thread
needs its own program counter
(PC), and its own logical regs (on
this hardware, each thread w/in
block gets its own physical regs)

•  Functional units, instruction unit,
i-cache shared by all threads

•	

Warp	
(InstrucDon	
Stream)	

In
st
ru
cD
on

s	
Is
su
ed

	

CS6235	 L2:	 Hardware	 Overview	

Aside: Multithreading

•  Historically, supercomputers targeting non-
numeric computation
•  HEP, Tera MTA, Cray XMT

•  Now common in commodity microprocessors
– Simultaneous multithreading:

•  Multiple threads may come from different
streams, can issue from multiple streams in
single instruction issue

•  Alpha 21464 and Pentium 4 are examples
•  CUDA somewhat simplified:

–  A full warp scheduled at a time
CS6235	 L2:	 Hardware	 Overview	

How is context switching so efficient?

•  Large register file (16K registers/block)
–  Each thread assigned a “window” of physical registers
–  Works if entire thread block’s registers do not exceed

capacity (otherwise, compiler fails)
–  May be able to schedule from multiple blocks simultaneously

•  Similarly, shared memory requirements must not exceed
capacity for all blocks simultaneously scheduled

CS6235	 L2:	 Hardware	 Overview	

Register	 File	

Block 0
Thread 0

Block 0
Thread 1

Block 0
Thread 256

Block 8
Thread 0

Block 8
Thread 1

Block 8
Thread 256

1/11/12

7

Example: Thread Scheduling on G80

•  Each Block is executed as 32-
thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

… Block 1 Warps

25	
L2:	 Hardware	 Overview	 CS6235	

SM Warp Scheduling
•  SM hardware implements zero-

overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized scheduling
policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all threads
in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimum of 13 Warps are needed

to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

CS6963	 L2:	 Hardware	 Overview	

SM Instruction Buffer – Warp
Scheduling

•  Fetch one warp instruction/cycle
–  from instruction cache
–  into any instruction buffer slot

•  Issue one “ready-to-go” warp
instruction/cycle
–  from any warp - instruction buffer slot
–  operand scoreboarding used to prevent

hazards
•  Issue selection based on round-robin/

age of warp
•  SM broadcasts the same instruction to

32 Threads of a Warp

I $

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

CS6235	 L2:	 Hardware	 Overview	

Scoreboarding

•  How to determine if a thread is ready to
execute?

•  A scoreboard is a table in hardware that
tracks
–  instructions being fetched, issued, executed
–  resources (functional units and operands) they

need
– which instructions modify which registers

•  Old concept from CDC 6600 (1960s) to
separate memory and computation

CS6235	 L2:	 Hardware	 Overview	

1/11/12

8

Scoreboarding
•  All register operands of all instructions in the

Instruction Buffer are scoreboarded
–  Status becomes ready after the needed values are

deposited
–  prevents hazards
–  cleared instructions are eligible for issue

•  Decoupled Memory/Processor pipelines
–  any thread can continue to issue instructions until

scoreboarding prevents issue
–  allows Memory/Processor ops to proceed in shadow of

Memory/Processor ops

CS6235	 L2:	 Hardware	 Overview	

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp	 Current	
Instruc*on	

Instruc*on	
State	

Warp	 1	 42	 CompuDng	

Warp	 3	 95	 CompuDng	

Warp	 8	 11	 Operands	
ready	 to	 go	

…	

Schedule
at time k

CS6235	 L2:	 Hardware	 Overview	

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp	 Current	
Instruc*on	

Instruc*on	
State	

Warp	 1	 42	 Ready	 to	
write	 result	 	

Warp	 3	 95	 CompuDng	

Warp	 8	 11	 CompuDng	

…	

Schedule
at time k+1

CS6235	 L2:	 Hardware	 Overview	

III. How it Comes Together
G80 Example: Executing Thread Blocks

•  Threads are assigned to
Streaming
Multiprocessors in block
granularity
–  Up to 8 blocks to

each SM as
resource allows

–  SM in G80 can take
up to 768 threads
•  Could be 256

(threads/block)
* 3 blocks

•  Or 128
(threads/block)
* 6 blocks, etc.

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread execution

32	
L2:	 Hardware	 Overview	

1/11/12

9

Details of Mapping
•  If #blocks in a grid exceeds number of SMs,

–  multiple blocks mapped to an SM
–  treated independently
–  provides more warps to scheduler so good as long as

resources not exceeded
–  Possibly context switching overhead when

scheduling between blocks (registers and shared
memory)

•  Thread Synchronization (more next time)
–  Within a block, threads observe SIMD model, and

synchronize using __syncthreads()
–  Across blocks, interaction through global memory

CS6235	 33	
L2:	 Hardware	 Overview	

Transparent Scalability
•  Hardware is free to assigns blocks to

any processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

34	
L2:	 Hardware	 Overview	 CS6235	

Summary of Lecture
•  SIMT = SIMD+SPMD
•  SIMD execution model within a warp, and

conceptually within a block
•  MIMD execution model across blocks
•  Multithreading of SMs used to hide memory

latency
•  Motivation for lots of threads to be

concurrently active
•  Scoreboarding used to track warps ready to

execute
CS6235	 35	

L2:	 Hardware	 Overview	

What’s Coming

•  Next few lectures:
– Correctness of parallelization
– Managing the memory hierarchy
– Next assignment

CS6235	 36	
L2:	 Hardware	 Overview	

