
4/3/12

1

CS6235

L17: Design Review and
6-Function MPI

L17: DRs and MPI
2 CS6235

Administrative
• Organick Lecture: TONIGHT

- David Shaw, “Watching Proteins Dance:
Molecular Simulation and the Future of Drug Design”,
220 Skaggs Biology, Reception at 6:15, talk at 7:00PM

-  Round-table with Shaw in the Large Conference Room (MEB
3147) beginning TODAY at 3:30pm (refreshments!

- Technical talk TOMORROW
“Anton: A Special-Purpose Machine That Achieves a
Hundred-Fold Speedup in Biomolecular Simulations”,
104 WEB, Reception at 11:50, talk at 12:15PM

L17: DRs and MPI
3 CS6235

Design Reviews
• Goal is to see a solid plan for each project and make

sure projects are on track
-  Plan to evolve project so that results guaranteed
- Show at least one thing is working
- How work is being divided among team members

• Major suggestions from proposals
-  Project complexity – break it down into smaller chunks with

evolutionary strategy
- Add references – what has been done before? Known

algorithm? GPU implementation?

L17: DRs and MPI
4 CS6235

Design Reviews
• Oral, 10-minute Q&A session (April 4 in class, plus office

hours if needed)
-  Each team member presents one part
- Team should identify “lead” to present plan

• Three major parts:
I.  Overview
- Define computation and high-level mapping to GPU
II.  Project Plan
-  The pieces and who is doing what.
-  What is done so far? (Make sure something is working by

the design review)
III. Related Work
-  Prior sequential or parallel algorithms/implementations
-  Prior GPU implementations (or similar computations)

• Submit slides and written document revising proposal that
covers these and cleans up anything missing from proposal.

4/3/12

2

L17: DRs and MPI
5 CS6235

Final Project Presentation
• Dry run on April 18

-  Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2’x3’ poster,

or bring your own poster.

• Poster session during class on April 23
-  Invite your friends, profs who helped you, etc.

• Final Report on Projects due May 4
- Submit code
- And written document, roughly 10 pages, based on earlier

submission.
-  In addition to original proposal, include

-  Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
-  Performance Measurement
- Related Work (from DR)

L17: DRs and MPI
6 CS6235

Let’s Talk about Demos
• For some of you, with very visual projects, I

encourage you to think about demos for the poster
session

• This is not a requirement, just something that would
enhance the poster session

• Realistic?
-  I know everyone’s laptops are slow …
- … and don’t have enough memory to solve very large

problems

• Creative Suggestions?
- Movies captured from run on larger system

L17: DRs and MPI
7 CS6235

Message Passing and MPI
• Message passing is the principle alternative to shared memory

parallel programming, predominant programming model for
supercomputers and clusters

-  Portable
-  Low-level, but universal and matches earlier hardware execution

model

• What it is
- A library used within conventional sequential languagess (Fortran,

C, C++)
-  Based on Single Program, Multiple Data (SPMD)
-  Isolation of separate address spaces

+ no data races, but communication errors possible
+ exposes execution model and forces programmer to think about

locality, both good for performance
-  Complexity and code growth!

Like OpenMP, MPI arose as a standard to replace a large number of
proprietary message passing libraries.

L17: DRs and MPI
8 CS6235

Message Passing Library Features
• All communication, synchronization require subroutine calls

- No shared variables
-  Program runs on a single processor just like any uniprocessor

program, except for calls to message passing library

• Subroutines for
-  Communication

-  Pairwise or point-to-point: A message is sent from a specific sending
process (point a) to a specific receiving process (point b).

-  Collectives involving multiple processors
–  Move data: Broadcast, Scatter/gather
–  Compute and move: Reduce, AllReduce

- Synchronization
- Barrier
- No locks because there are no shared variables to protect

- Queries
- How many processes? Which one am I? Any messages waiting?

4/3/12

3

L17: DRs and MPI
9 CS6235

MPI References
• The Standard itself:

- at http://www.mpi-forum.org
- All MPI official releases, in both postscript and

HTML

• Other information on Web:
- at http://www.mcs.anl.gov/mpi
- pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp

L17: DRs and MPI
10 CS6235

Compilation

Copyright © 2010, Elsevier Inc. All rights Reserved

mpicc -g -Wall -o mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name
(as opposed to default a.out)

produce
debugging
information

L17: DRs and MPI
11 CS6235

Execution

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes
Copyright © 2010, Elsevier Inc. All rights Reserved

L17: DRs and MPI
12 CS6235

Hello (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf(”Greetings from process %d of

 %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp 11/03/2011 12"CS4961

4/3/12

4

L17: DRs and MPI
13 CS6235

Hello (C++)

#include "mpi.h"

#include <iostream>

int main(int argc, char *argv[])

{

 int rank, size;

 MPI::Init(argc, argv);

 rank = MPI::COMM_WORLD.Get_rank();

 size = MPI::COMM_WORLD.Get_size();

 std::cout << ”Greetings from process " << rank << "
 of " << size << "\n";

 MPI::Finalize();

 return 0;

}
Slide source: Bill Gropp, 11/03/2011 13"CS4961 L17: DRs and MPI

14 CS6235

Execution

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 !

Copyright © 2010, Elsevier Inc. All rights Reserved

L17: DRs and MPI
15 CS6235

MPI Components
• MPI_Init

- Tells MPI to do all the necessary setup.

• MPI_Finalize
- Tells MPI we’re done, so clean up anything allocated for this

program.

Copyright © 2010, Elsevier Inc. All rights Reserved

L17: DRs and MPI
16 CS6235

Basic Outline

Copyright © 2010, Elsevier Inc. All rights Reserved

4/3/12

5

L17: DRs and MPI
17 CS6235

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)
• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

• When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

Slide source: Bill Gropp

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

L17: DRs and MPI
18 CS6235

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)
• Waits until a matching (both source and tag) message is

received from the system, and the buffer can be used
• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

• tag is a tag to be matched on or MPI_ANY_TAG
• receiving fewer than count occurrences of datatype is OK,

but receiving more is an error
• status contains further information (e.g. size of message)

Slide source: Bill Gropp

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

L17: DRs and MPI
19 CS6235

MPI Datatypes
• The data in a message to send or receive is
described by a triple (address, count,
datatype), where

• An MPI datatype is recursively defined as:
- predefined, corresponding to a data type from

the language (e.g., MPI_INT, MPI_DOUBLE)
- a contiguous array of MPI datatypes
- a strided block of datatypes
- an indexed array of blocks of datatypes
- an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

Slide source: Bill Gropp L17: DRs and MPI
20 CS6235

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp

4/3/12

6

L17: DRs and MPI
21 CS6235

Six-Function MPI
• Most commonly used constructs
• A decade or more ago, almost all supercomputer

programs only used these
- MPI_Init
- MPI_Finalize
- MPI_Comm_Size
- MPI_Comm_Rank
- MPI_Send
- MPI_Recv

• Also very useful
•  MPI_Reduce and other collectives

• Other features of MPI
- Task parallel constructs
- Optimized communication: non-blocking, one-sided

L17: DRs and MPI
22 CS6235

MPI_Reduce

Copyright © 2010, Elsevier Inc. All rights Reserved

L17: DRs and MPI
23 CS6235

Count 6s in MPI?

