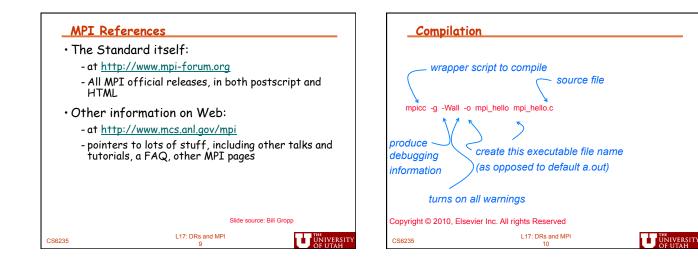
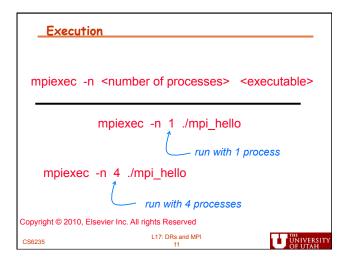
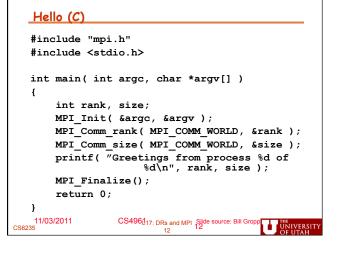


_A	dministrative	
· 0	rganick Lecture: TONIGHT	
	- David Shaw, " <u>Watching Proteins Dance:</u> <u>Molecular Simulation and the Future of Drug Design"</u> 220 Skaggs Biology, Reception at 6:15, talk at 7:00PM	
	- Round-table with Shaw in the Large Conference Room (ME 3147) beginning TODAY at 3:30pm (refreshments!	В
	- Technical talk TOMORROW "Anton: A Special-Purpose Machine That Achieves a Hundred-Fold Speedup in Biomolecular Simulations", 104 WEB, Reception at 11:50, talk at 12:15PM	
CS6235		VERSITY UTAH

Design Re	views		Des	ign Reviews
 Goal is to see sure project Plan to evo Show at le How work Major sugge Project co 	views to a solid plan for each proje ts are on track olve project so that results guarar ast one thing is working is being divided among team memb estions from proposals mplexity - break it down into smal ry strategy	nteed bers	• Oral, hours - E - T • Thre I. - D	IGN REVIEWS 10-minute Q&A sess is if needed) ach team member pres eam should identify "le e major parts: Overview efine computation and Project Plan The pieces and who is
	ences - what has been done befor) GPU implementation?	re? Known	- - • Subr	What is done so far? the design review) Related Work Prior sequential or pa Prior GPU implementa it slides and written these and cleans u
CS6235	L17: DRs and MPI 3	UNIVERSITY OF UTAH	CS6235	L1

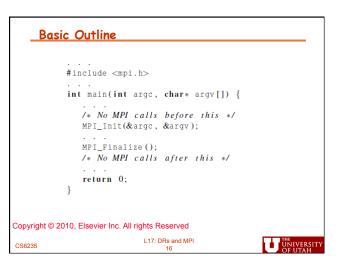

Final Project Presentation Let's Talk about Demos • For some of you, with very visual projects, I encourage you to think about demos for the poster session • Dry run on April 18 - Easels, tape and poster board provided - Tape a set of Powerpoint slides to a standard 2'x3' poster, • This is not a requirement, just something that would enhance the poster session or bring your own poster. • Poster session during class on April 23 - Invite your friends, profs who helped you, etc. Realistic? - I know everyone's laptops are slow ... • Final Report on Projects due May 4 - ... and don't have enough memory to solve very large problems - Submit code - And written document, roughly 10 pages, based on earlier Creative Suggestions? submission. - Movies captured from run on larger system - In addition to original proposal, include - Project Plan and How Decomposed (from DR) - Description of CUDA implementation - Performance Measurement - Related Work (from DR) L17: DRs and MPI UNIVERSITY OF UTAH CS6235 CS6235

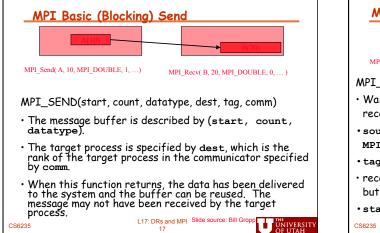

Message Passing and MPI	Mess
· Message passing is the principle alternative to shared memory	• All commu
parallel programming, predominant programming model for supercomputers and clusters	- No shar
- Portable	- Progran
- Low-level, but universal and matches earlier hardware execution	progran
model	 Subroutin
• What it is	- Commur
- A library used within conventional sequential languagess (Fortran, C, C++)	- Pairv proce
- Based on Single Program, Multiple Data (SPMD)	- Colle
- Isolation of separate address spaces	-
+ no data races, but communication errors possible	-
+ exposes execution model and forces programmer to think about	- Synchro
locality, both good for performance	- Barr
- Complexity and code growth!	- No la
Like OpenMP, MPI arose as a standard to replace a large number of	- Queries
proprietary message passing libraries.	- How
CS6235 L17: DRs and MPI 7 UNIVERSITY 7 UNIVERSITY	CS6235

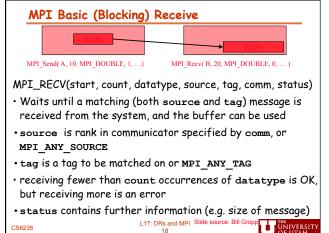

CS6235

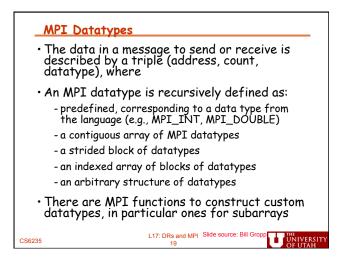
Message Passing Library Features
• All communication, synchronization require subroutine calls
- No shared variables
 Program runs on a single processor just like any uniprocessor program, except for calls to message passing library
 Subroutines for
- Communication
 Pairwise or point-to-point: A message is sent from a specific sending process (point a) to a specific receiving process (point b).
- Collectives involving multiple processors
 Move data: Broadcast, Scatter/gather
 Compute and move: Reduce, AllReduce
- Synchronization
- Barrier
- No locks because there are no shared variables to protect
- Queries
- How many processes? Which one am I? Any messages waiting?
CS6235 L17: DRs and MPI 8 UNIVERSITY 0F UTAH

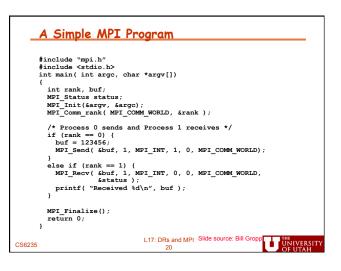
L17: DRs and MPI



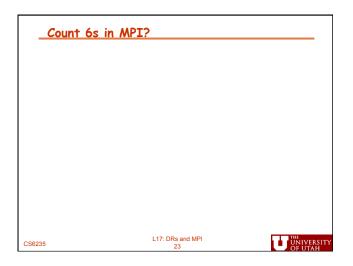



Hello (C++)


_ <u></u>	xecution	
	mpiexec -n 1 ./mpi_hello	
	Greetings from process 0 of 1 !	
	mpiexec -n 4 ./mpi_hello	
	Greetings from process 0 of 4 !	
	Greetings from process 1 of 4 !	
	Greetings from process 2 of 4 !	
	Greetings from process 3 of 4 !	
Copyright	© 2010, Elsevier Inc. All rights Reserved	
CS6235	L17: DRs and MPI 14	UNIVERSITY OF LITAH


	PI Components
۰MF	PI_Init
-	Tells MPI to do all the necessary setup.
	<pre>int MPI_Init(int * argc_p /* in/out */, char*** argv_p /* in/out */);</pre>
۰MF	PI_Finalize
-	- Tells MPI we're done, so clean up anything allocated for this program.
	pi ogi um.
	<pre>int MPI_Finalize(void);</pre>
Copyright @	⊇ 2010, Elsevier Inc. All rights Reserved
CS6235	L17: DRs and MPI 15 UNIVERSIT





	int MPI_Reduc	ce (
	void *	input_dat	a_p /*	in	*/,	
	void *	output_da	ata_p /*	out	*/,	
	int	count	/*	in	*/,	
	MPI_Dat	atype datatype	/*	in	*/,	
	MPI_Op	operator	/*	in	*/,	
	int	dest_proc	cess /*	in	*/,	
	MPI_Cor	nm comm	/*	in	*/);	
MPI	_Reduce(&loca) MPI_COMM_W		t, 1, MPI	_DOU	BLE, MP	I_SUM, 0
[double least v					
	double local_x	[N], SUM[N],				

