
CS6235

L15: Dynamic
Scheduling

L14: Dynamic Task Queues
2 CS6235

Administrative
• STRSM due March 23 (EXTENDED)
• Midterm coming

-  In class March 28, can bring one page of notes
-  Review notes, readings and review lecture
-  Prior exams are posted

• Design Review
-  Intermediate assessment of progress on project, oral and short
-  In class on April 4

• Final projects
-  Poster session, April 23 (dry run April 18)
-  Final report, May 3

L14: Dynamic Task Queues
3 CS6235

Schedule of Remaining Lectures
March 19 (today): Dynamic Scheduling
March 21: Sorting
March 26: Midterm Review
April 2: Tree Algorithms
April 4: Design Reviews
April 9: Fast Fourier Transforms or

 TBD
April 11: TBD
April 16: Open CL
April 18: Poster Dry Run
April 23: Public Poster Presentation

L14: Dynamic Task Queues
4 CS6235

Sources for Today’s Lecture
•  “On Dynamic Load Balancing on Graphics Processors,” D.

Cederman and P. Tsigas, Graphics Hardware (2008).
http://www.cs.chalmers.se/~tsigas/papers/

GPU_Load_Balancing-GH08.pdf
•  “A simple, fast and scalable non-blocking concurrent

FIFO queue for shared memory multiprocessor systems,”
P. Tsigas and Y. Zhang, SPAA 2001.

(more on lock-free queue)
• Thread Building Blocks
http://www.threadingbuildingblocks.org/
(more on task stealing)

L14: Dynamic Task Queues
5 CS6235

Motivation for Next Few Lectures
• Goal is to discuss prior solutions to topics that might

be useful to your projects
- Dynamic scheduling (TODAY)
- Tree-based algorithms
- Sorting
-  Combining CUDA and Open GL to display results of

computation
-  Combining CUDA with MPI for cluster execution (6-function

MPI)
- Other topics of interest?

• End of semester
-  CUDA 4 Features
- Open CL

L14: Dynamic Task Queues
6 CS6235

Motivation: Dynamic Task Queue
• Mostly we have talked about how to partition large

arrays to perform identical computations on
different portions of the arrays

- Sometimes a little global synchronization is required

• What if the work is very irregular in its structure?
- May not produce a balanced load
- Data representation may be sparse
- Work may be created on GPU in response to prior

computation

L14: Dynamic Task Queues
7 CS6235

Dynamic Parallel Computations
• These computations do not necessarily map well to a

GPU, but they are also hard to do on conventional
architectures

- Overhead associated with making scheduling decisions at run
time

- May create a bottleneck (centralized scheduler? centralized
work queue?)

-  Interaction with locality (if computation is performed in
arbitrary processor, we may need to move data from one
processor to another).

• Typically, there is a tradeoff between how balanced
is the load and these other concerns.

L14: Dynamic Task Queues
8 CS6235

Dynamic Task Queue, Conceptually

Processors

Task Queue(s)

0
N-2 2 1 N-1

L14: Dynamic Task Queues
9 CS6235

Dynamic Task Queue, Conceptually

Processors

Task Queue(s)

0
N-2 2 1 N-1

Processor 0
requests a work
assignment

L14: Dynamic Task Queues
10 CS6235

Dynamic Task Queue, Conceptually

Processors

Task Queue(s)

0
N-2 2 1 N-1

First task is assigned to processor 0 and task queue is updated

Just to make this work correctly, what has to happen?
Topic of today’s lecture!

L14: Dynamic Task Queues
11 CS6235

Constructing a dynamic task queue on GPUs
• Must use some sort of atomic operation for global

synchronization to enqueue and dequeue tasks
• Numerous decisions about how to manage task queues

- One on every SM?
- A global task queue?
- The former can be made far more efficient but also more

prone to load imbalance

• Many choices of how to do synchronization
- Optimize for properties of task queue (e.g., very large task

queues can use simpler mechanisms)

• Static vs. dynamic scheduling
-  In batches vs. one-by-one

• All proposed approaches have a statically allocated
task list that must be as large as the max number of
waiting tasks

L14: Dynamic Task Queues
12 CS6235

Suggested Synchronization Mechanism
// also unsigned int and long long versions
int atomicCAS(int* address, int compare, int val);
reads the 32-bit or 64-bit word old located at the
address in global or shared memory, computes (old ==
compare ? val : old), and stores the result back to
memory at the same address. These three operations
are performed in one atomic transaction. The function
returns old (Compare And Swap). 64-bit words are only
supported for global memory.

__device__ void getLock(int *lockVarPtr) {
while (atomicCAS(lockVarPtr, 0, 1) == 1);
}

L14: Dynamic Task Queues
13 CS6235

Synchronization
• Blocking

- Uses mutual exclusion to only allow one process at a time to
access the object.

•  Lockfree
- Multiple processes can access the object concurrently. At

least one operation in a set of concurrent operations
finishes in a finite number of its own steps.

• Waitfree
- Multiple processes can access the object concurrently.

Every operation finishes in a finite number of its own steps.

Slide source: Daniel Cederman

L14: Dynamic Task Queues
14 CS6235

Load Balancing Methods
• Static Blocking Task Queue
• Dynamic Blocking Task Queue
• Non-blocking Task Queue
• Task Stealing

Slide source: Daniel Cederman

L14: Dynamic Task Queues
15 CS6235

Blocking Static Task Queue (Simplest)
function DEQUEUE(q, id)
 return q.in[id] ;
function ENQUEUE(q, task)
 localtail ← atomicAdd (&q.tail, 1)
 q.out[localtail] = task
function NEWTASKCNT(q)
 q.in, q.out , oldtail , q.tail ← q.out , q.in, q.tail, 0
 return oldtail
procedure MAIN(taskinit)
 q.in, q.out ← newarray(maxsize), newarray(maxsize)
 q.tail ← 0, Tbid ← 0
 ENQUEUE(q, taskinit)
 blockcnt ← NEWTASKCNT (q)
 while blockcnt != 0 do
 run blockcnt blocks in parallel
 t ← DEQUEUE(q, ++Tbid)
 subtasks ← doWork(t)
 for each nt in subtasks do
 ENQUEUE(q, nt)
 blockcnt ← NEWTASKCNT (q)

Two lists:
 q_in is read only and
not synchronized
 q_out is write only and
is updated atomically

When NEWTASKCNT is
called at the end of major
task scheduling phase,
q_in and q_out are
swapped

Synchronization required
to insert tasks, but at
least one gets through
(wait free)

L14: Dynamic Task Queues
16 CS6235

Blocking Static Task Queue

ENQUEUE

TBid qtail

TBid qtail

L14: Dynamic Task Queues
17 CS6235

Blocking Dynamic Task Queue
function DEQUEUE(q)
 while atomicCAS(&q.lock, 0, 1) == 1 do;
 if q.beg != q.end then
 q.beg ++
 result ← q.data[q.beg]
 else
 result ← NIL
 q.lock ← 0
 return result
function ENQUEUE(q, task)
 while atomicCAS(&q.lock, 0, 1) == 1 do;

 q.end++
 q.data[q.end] ← task
 q.lock ← 0

Use lock for both
adding
and deleting tasks
from the queue.

All other threads
block waiting for lock.

Potentially very
inefficient, particularly
for fine-grained tasks

L14: Dynamic Task Queues
18 CS6235

Blocking Dynamic Task Queue

ENQUEUE

qbeg qend

qbeg qend

DEQUEUE

qend qbeg

L14: Dynamic Task Queues
19 CS6235

Lock-free Dynamic Task Queue
function DEQUEUE(q)
 oldbeg ← q.beg
 lbeg ← oldbeg
 while task = q.data[lbeg] == NIL do
 lbeg ++
 if atomicCAS(&q.data[lbeg], task, NIL) != task then
 restart
 if lbeg mod x == 0 then
 atomicCAS(&q.beg, oldbeg, lbeg)
 return task
function ENQUEUE(q, task)
 oldend ← q.end
 lend ← oldend
 while q.data[lend] != NIL do
 lend ++
 if atomicCAS(&q.data[lend], NIL, task) != NIL then
 restart
 if lend mod x == 0 then
 atomicCAS(&q.end , oldend, lend)

Idea:
At least one thread
will succeed to add or
remove task from
queue

Optimization:
Only update
beginning and end
with atomicCAS every
x elements.

L14: Dynamic Task Queues
20 CS6235

Task Stealing
• No code provided in paper
• Idea:

- A set of independent task queues.
- When a task queue becomes empty, it goes out to other task

queues to find available work
-  Lots and lots of engineering needed to get this right
-  Best implementions of this in Intel Thread Building Blocks

and Cilk

L14: Dynamic Task Queues
21 CS6235

General Issues
• One or multiple task queues?
• Where does task queue reside?

-  If possible, in shared memory
- Actual tasks can be stored elsewhere, perhaps in global

memory

L14: Dynamic Task Queues
22 CS6235

Remainder of Paper
• Octtree partitioning of particle system used as

example application
• A comparison of 4 implementations

-  Figures 2 and 3 examine two different GPUs
-  Figures 4 and 5 look at two different particle distributions

