
2/28/12

1

L11: Sparse Linear Algebra
on GPUs

CS6235 2

Sparse Linear Algebra

1!
L11: Sparse Linear Algebra

CS6235

http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

GPU Challenges
•  Computation partitioning?
•  Memory access patterns?
•  Parallel reduction

BUT, good news is that sparse linear
algebra performs TERRIBLY on
conventional architectures, so poor
baseline leads to improvements!

2!
L11: Sparse Linear Algebra

CS6235

Some common representations
 1 7 0 0
 0 2 8 0
 5 0 3 9
 0 6 0 4 [] A =

data =

 * 1 7
 * 2 8
 5 3 9
 6 4 * []
 1 7 *
 2 8 *
 5 3 9
 6 4 *

[] 0 1 *
 1 2 *
 0 2 3
 1 3 *

[]

offsets = [-2 0 1]

data = indices =

Stores elements along a set of diagonals.

Stores a set of K elements per row and pad as
needed. Best suited when number non-zeros
roughly consistent across rows.

DIA

. Each thread iterates over the diagonals
+ Avoids the need to store row/column indices
+ Guarantees coalesced access
- Can be wasteful if lots of padding required

ELL

3!
L11: Sparse Linear Algebra

-Efficiency rapidly degrades when the
number of nonzeros per matrix row varies

2/28/12

2

Some common representations
 1 7 0 0
 0 2 8 0
 5 0 3 9
 0 6 0 4 [] A =

ptr = [0 2 4 7 9]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

row = [0 0 1 1 2 2 2 3 3]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

Compressed Sparse Row (CSR):
Store only nonzero elements, with
“ptr” to beginning of each row and
“indices” representing column.

Store nonzero elements and their
corresponding “coordinates”.

CSR

COO + Performance is largely insensitive to
irregularity in the underlying data structure

4!
L11: Sparse Linear Algebra

CSR Example

for (j=0; j<nr; j++) {
 for (k = ptr[j]; k<ptr[j+1]-1; k++)
 t[j] = t[j] + data[k] * x[indices[k]];

5!
L11: Sparse Linear Algebra

CS6235

Summary of Representation
and Implementation

 Bytes/Flop

Kernel Granularity Coalescing 32-bit 64-bit
DIA thread : row full 4 8
ELL thread : row full 6 10
CSR(s) thread : row rare 6 10
CSR(v) warp : row partial 6 10
COO thread : nonz full 8 12
HYB thread : row full 6 10
Table 1 from Bell/Garland: Summary of SpMV kernel properties.

6!
L12: Sparse Linear Algebra

CS6235

Other Representation Examples
•  Blocked CSR

–  Represent non-zeros as a set of blocks, usually of fixed size
–  Within each block, treat as dense and pad block with zeros
–  Block looks like standard matvec
–  So performs well for blocks of decent size

•  Hybrid ELL/COO
–  Exploits these:

•  ELLPACK format is well-suited to vector and SIMD, its efficiency rapidly
degrades when the number of nonzeros per matrix row varies

•  Storage efficiency of the COO format is invariant to the distribution of
nonzeros per row

–  Find a “K” value that works for most of matrix
–  Use COO for rows with more nonzeros (or even significantly fewer)

7!
L11: Sparse Linear Algebra

CS6235

Richard Vuduc, Attila Gyulassy, James W. Demmel, and Katherine A. Yelick. 2003. Memory hierarchy
optimizations and performance bounds for sparse ATAx. In Proceedings of the 2003 international
conference on Computational science: PartIII (ICCS'03)

2/28/12

3

Stencil Example

What is a 3-point stencil? 5-point stencil?
7-point? 9-point? 27-point?

Examples:
a[i] = 2*b[i] - (b[i-1] + b[i+1]);  

[-1 2 -1]
a[i][j] = 4*b[i][j] -(b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i]

[j+1]);  
[0 -1 0]  
[-1 4 -1]  
[0 -1 0]

8!
L11: Sparse Linear Algebra

CS6235

Stencil Result
(structured matrices)

See Figures 11 and 12, Bell and Garland

9!
L11: Sparse Linear Algebra

CS6235

Unstructured Matrices

See Figures 13 and 14

Note that graphs can also be represented
as sparse matrices.
What is an adjacency matrix?

10!
L11: Sparse Linear Algebra

CS6235

PPoPP paper

•  What if you customize the
representation to the problem?

•  Additional global data structure
modifications (like blocked
representation)?

•  Strategy
– Apply models and autotuning to identify

best solution for each application

11!
L11: Sparse Linear Algebra

CS6235

2/28/12

4

Summary of Results

BELLPACK (blocked ELLPACK) achieves up
to 29 Gflop/s in SP and 15.7 Gflop/s in
DP

Up to 1.8x and 1.5x improvement over Bell
and Garland.

12!
L11: Sparse Linear Algebra

CS6235

This Lecture

•  Exposure to the issues in a sparse
matrix vector computation on GPUs

•  A set of implementations and their
expected performance

•  A little on how to improve performance
through application-specific knowledge
and customization of sparse matrix
representation

13!
L11: Sparse Linear Algebra

CS6235

