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http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm 

GPU Challenges 
•  Computation partitioning? 
•  Memory access patterns? 
•  Parallel reduction 

BUT, good news is that sparse linear 
algebra performs TERRIBLY on 
conventional architectures, so poor 
baseline leads to improvements!   
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Some common representations 
 1 7 0 0 
 0 2 8 0 
 5 0 3 9 
 0 6 0 4 [ ] A = 

data =  

 *  1 7 
 *  2 8 
 5 3 9 
 6 4 * [ ] 
 1 7 * 
 2 8 * 
 5 3 9 
 6 4 * 

[ ]  0 1 * 
 1 2 * 
 0 2 3 
 1 3 * 

[ ] 

offsets = [-2 0 1]  

data =  indices =  

Stores elements along a set of diagonals. 

Stores a set of K elements per row and pad as 
needed. Best suited when number non-zeros 
roughly consistent across rows. 

DIA 

. Each thread iterates over the diagonals 
+ Avoids the need to store row/column indices 
+ Guarantees coalesced access 
- Can be wasteful if lots of padding required 

ELL 
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-Efficiency rapidly degrades when the  
number of nonzeros per matrix row varies 
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Some common representations 
 1 7 0 0 
 0 2 8 0 
 5 0 3 9 
 0 6 0 4 [ ] A = 

ptr =        [0 2 4 7 9] 
indices = [0 1 1 2 0 2 3 1 3] 
data =     [1 7 2 8 5 3 9 6 4] 

row =       [0 0 1 1 2 2 2 3 3] 
indices =  [0 1 1 2 0 2 3 1 3] 
data =      [1 7 2 8 5 3 9 6 4] 

Compressed Sparse Row (CSR): 
Store only nonzero elements, with 
“ptr” to beginning of each row and 
“indices” representing column.  

Store nonzero elements and their 
corresponding “coordinates”.  

CSR 

COO + Performance is largely insensitive to 
irregularity in the underlying data structure 
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CSR Example 

for (j=0; j<nr; j++) {                                                       
    for (k = ptr[j]; k<ptr[j+1]-1; k++)  
      t[j] = t[j] + data[k] * x[indices[k]]; 
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Summary of Representation 
and Implementation 

           
       Bytes/Flop 

Kernel     Granularity     Coalescing     32-bit     64-bit 
DIA        thread : row       full               4               8 
ELL         thread : row       full               6              10 
CSR(s)    thread : row       rare              6              10 
CSR(v)    warp : row          partial           6              10 
COO       thread : nonz     full                8               12 
HYB       thread : row       full                6               10 
Table 1 from Bell/Garland: Summary of SpMV kernel properties. 
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Other Representation Examples 
•  Blocked CSR 

–  Represent non-zeros as a set of blocks, usually of fixed size 
–  Within each block, treat as dense and pad block with zeros 
–  Block looks like standard matvec 
–  So performs well for blocks of decent size 

•  Hybrid ELL/COO 
–  Exploits these: 

•  ELLPACK format is well-suited to vector and SIMD, its efficiency rapidly 
degrades when the number of nonzeros per matrix row varies 

•  Storage efficiency of the COO format is invariant to the distribution of 
nonzeros per row 

–  Find a “K” value that works for most of matrix 
–  Use COO for rows with more nonzeros (or even significantly fewer) 

7!
L11: Sparse Linear Algebra

CS6235
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optimizations and performance bounds for sparse ATAx. In Proceedings of the 2003 international 
conference on Computational science: PartIII (ICCS'03) 
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Stencil Example 

What is a 3-point stencil? 5-point stencil? 
7-point?  9-point?  27-point? 

Examples:  
a[i] = 2*b[i] - (b[i-1] + b[i+1]);   

[-1  2 -1]
a[i][j] = 4*b[i][j] -(b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i]

[j+1]);  
[  0  -1     0]  
[-1    4   -1]  
[  0  -1     0]
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Stencil Result  
(structured matrices) 

See Figures 11 and 12, Bell and Garland 
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Unstructured Matrices 

See Figures 13 and 14 

Note that graphs can also be represented 
as sparse matrices.   
What is an adjacency matrix? 
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PPoPP paper 

•  What if you customize the 
representation to the problem? 

•  Additional global data structure 
modifications (like blocked 
representation)? 

•  Strategy 
– Apply models and autotuning to identify 

best solution for each application 
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Summary of Results 

BELLPACK (blocked ELLPACK) achieves up 
to 29 Gflop/s in SP and 15.7 Gflop/s in 
DP 

Up to 1.8x and 1.5x improvement over Bell 
and Garland. 
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This Lecture 

•  Exposure to the issues in a sparse 
matrix vector computation on GPUs 

•  A set of implementations and their 
expected performance 

•  A little on how to improve performance 
through application-specific knowledge 
and customization of sparse matrix 
representation 
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