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CS4961 Parallel Programming  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Administrative 
• I will be on travel Tuesday, September 20 
• Nikhil will hold lab hours to complete the 

programming assignment 
-  ROOM L130 
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Programming Assignment 1:  
Due Wednesday, Sept. 21, 11:59PM   
To be done on water.eng.utah.edu (you all have accounts – 
passwords available if your CS account doesn’t work) 

1.  Write an average of a set of numbers in OpenMP 
for a problem size and data set to be provided.  Use 
a block data distribution.  

2.  Write the same computation in Pthreads. 
Report your results in a separate README file. 

- What is the parallel speedup of your code?  To compute 
parallel speedup, you will need to time the execution of both 
the sequential and parallel code, and report  

 speedup = Time(seq) / Time (parallel) 
-  If your code does not speed up, you will need to adjust the 

parallelism granularity, the amount of work each processor 
does between synchronization points. 

-  Report results for two different numbers of threads. 

Extra credit: Rewrite both codes using a cyclic distribution 

09/15/2011! CS4961! 3!

Programming Assignment 1, cont. 
• A test harness is provided in avg-test-harness.c that 

provides a sequential average, validation, speedup timing 
and substantial instructions on what you need to do to 
complete the assignment.  

• Here are the key points: 
-  You’ll need to write the parallel code, and the things needed to 

support that. Read the top of the file, and search for “TODO”. 
-  Compile w/ OpenMP: cc –o avg-openmp –O3 –xopenmp avg-openmp.c 
-  Compile w/ Pthreads:  

    cc –o avg-pthreads –O3 avg-pthreads.c –lpthread  
-  Run OpenMP version: ./avg-openmp > openmp.out 
-  Run Pthreads version: ./avg-pthreads > pthreads.out  

• Note that editing on water is somewhat primitive – I’m 
using vim.  Apparently, you can edit on CADE machines and 
just run on water.  Or you can try vim, too.  
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Today’s Lecture 
• Data Dependences 

- How compilers reason about them 
- Informal determination of parallelization safety 

• Locality 
- Data reuse vs. data locality 
- Reordering transformations for locality 

• Sources for this lecture: 
- Notes on website 
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Data Dependence and Related Definitions 

•  Definition: 
Two memory accesses are involved in a data dependence if they may 
refer to the same memory location and one of the references is a 
write. 

A data dependence can either be between two distinct program 
statements or two different dynamic executions of the same program 
statement. 

•  Source:  
•  “Optimizing Compilers for Modern Architectures:  A Dependence-Based 

Approach”, Allen and Kennedy, 2002, Ch. 2.  
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Fundamental Theorem of Dependence 

• Theorem 2.2: 
- Any reordering transformation that preserves 

every dependence in a program preserves the 
meaning of that program. 
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In this course, we consider two kinds of reordering 
transformations 

• Parallelization 
- Computations that execute in parallel between 

synchronization points are potentially reordered.  Is 
that reordering safe?  According to our definition, it is 
safe if it preserves the dependences in the code. 

• Locality optimizations 
- Suppose we want to modify the order in which a 

computation accesses memory so that it is more likely 
to be in cache.  This is also a reordering 
transformation, and it is safe if it preserves the 
dependences in the code. 

• Reduction computations 
- We have to relax this rule for reductions.  It is safe to reorder 

reductions for commutative and associative operations. 
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Targets of Memory Hierarchy Optimizations 

• Reduce memory latency 
-   The latency of a memory access is the time (usually in cycles) 

between a memory request and its completion 

• Maximize memory bandwidth 
-  Bandwidth is the amount of useful data that can be retrieved 

over a time interval 

• Manage overhead 
-  Cost of performing optimization (e.g., copying) should be less 

than anticipated gain 
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Reuse and Locality 
• Consider how data is accessed 

- Data reuse:  
- Same or nearby data used multiple times  
- Intrinsic in computation  

- Data locality:  
- Data is reused and is present in “fast memory” 
- Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
-  Appropriate data placement and layout 
-  Code reordering transformations 
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Exploiting Reuse: Locality optimizations 
• We will study a few loop transformations that 

reorder memory accesses to improve locality. 
• These transformations are also useful for 

parallelization too (to be discussed later). 
• Two key questions: 

- Safety:  
- Does the transformation preserve dependences? 

-  Profitability: 
-  Is the transformation likely to be profitable? 
- Will the gain be greater than the overheads (if any) associated 

with the transformation? 
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for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

NOTE: C multi-dimensional arrays are stored in row-major order, Fortran 
in column major 

Loop Transformations: Loop Permutation 

09/15/2011 12!CS4961!



9/15/11 

4 

13!

Tiling (Blocking): 
Another Loop Reordering Transformation 

• Blocking reorders loop iterations to bring iterations 
that reuse data closer in time 

• Goal is to retain in cache/register/scratchpad (or 
other constrained memory structure) between 
reuse 

J 

I 

J 

I 
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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] +B[j,i] 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j,i] 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

   for (i=ii; i<min(ii+s-1,N); i++) 
   D[i] = D[i] +B[j,i] 

Permute 
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• Unroll simply replicates the statements in a loop, with 
the number of copies called the unroll factor 

• As long as the copies don’t go past the iterations in 
the original loop, it is always safe 

- May require “cleanup” code 

• Unroll-and-jam involves unrolling an outer loop and 
fusing together the copies of the inner loop (not 
always safe) 

• One of the most effective optimizations there is, but 
there is a danger in unrolling too much 

Unroll, Unroll-and-Jam 

Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i]; 

Unroll j 
for (i=0; i<4; i++) 
 for (j=0; j<8; j+=2) 
  A[i][j] = B[j+1][i]; 
  A[i][j+1] = B[j+2][i]; 

Unroll-and-jam i 
for (i= 0; i<4; i+=2) 
 for (j=0; j<8; j++)  
   A[i][j] = B[j+1][i]; 
   A[i+1][j] = B[j+1][i+1]; 
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How does Unroll-and-Jam benefit locality? 

• Temporal reuse of B in registers 
• More if I loop is unrolled further 
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Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i] + B[j+1][i+1];  

Unroll-and-jam i and j loops 
for (i=0; i<4; i+=2) 
 for (j=0; j<8; j+=2) { 
  A[i][j]   = B[j+1][i] + B[j+1][i+1]; 
  A[i+1][j] = B[j+1][i+1] + B[j+1][i+2]; 
  A[i][j+1] = B[j+2][i] + B[j+2][i+1]; 
  A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];  
} 
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Other advantages of Unroll-and-Jam 

• Less loop control 
• Independent computations for instruction-level 

parallelism 
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Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i] + B[j+1][i+1];  

Unroll-and-jam i and j loops 
for (i=0; i<4; i+=2) 
 for (j=0; j<8; j+=2) { 
  A[i][j]   = B[j+1][i] + B[j+1][i+1]; 
  A[i+1][j] = B[j+1][i+1] + B[j+1][i+2]; 
  A[i][j+1] = B[j+2][i] + B[j+2][i+1]; 
  A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];  
} 

+ 
B 

B 
A 

= + 
B 

B 
A 

= + 
B 

B 
A 

= + 
B 

B 
A 

= 

How to determine safety of reordering 
transformations 

• Informally  
- Must preserve relative order of dependence source and sink 
- So, cannot reverse order 

• Formally 
- Tracking dependences 
- A simple abstraction: Distance vectors 

09/15/2011! CS4961! 18!

19!

Forall or Doall loops:  
Loops whose iterations can execute in parallel (a particular 
reordering transformation) 

Example 
  forall (i=1; i<=n; i++)  
   A[i] = B[i] + C[i]; 

Meaning? 

Brief Detour on Parallelizable Loops as a 
Reordering Transformation 

Each iteration can execute independently of others 
Free to schedule iterations in any order (e.g., pragma omp forall) 

Source of scalable, balanced work 
Common to scientific, multimedia, graphics & other domains 
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Data Dependence for Arrays 

• Recognizing parallel loops (intuitively) 
-  Find data dependences in loop 
- No dependences crossing iteration boundary  

parallelization of loop’s iterations is safe 

for (i=2; i<5; i++) 
 A[i] = A[i-2]+1; 

for (i=1; i<=3; i++)  
 A[i] = A[i]+1; 

Loop- 
Carried 
dependence 

Loop- 
Independent 
dependence 
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1. Characterize Iteration Space 

•  Iteration instance: represented as coordinates in iteration space 
-  n-dimensional discrete cartesian space for n deep loop nests 

•  Lexicographic order: Sequential execution order of iterations  
[1,1], [1,2], ..., [1,6],[1,7],  
[2,2], [2,3], ..., [2,6], ... 

•  Iteration I (a vector) is lexicographically less than  I’, I<I’ , iff  
    there exists c ( i1, …, ic-1) = (i’1, …, i’c-1) and ic < i’c . 

j 

for (i=1;i<=5; i++)  
  for (j=i;j<=7; j++) 

 ... 
1 ≤ i ≤ 5 
i ≤ j ≤ 7 

i 
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2. Compare Memory Accesses across 
Dynamic Instances in Iteration Space 

N = 6; 
for (i=1; i<N; i++) 
    for (j=1; j<N; j++) 
          A[i+1,j+1] = A[i,j] * 2.0; 

i 

j 
How to describe relationship between two dynamic instances? 

 e.g., I=[1,1] and I’=[2,2] 

I=[1,1], 
Write A[2,2] 

I’=[2,2], 
Read A[2,2] 
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Distance Vectors 

• Distance vector = [1,1]  
• A loop has a distance vector D if there exists data 

dependence from iteration vector I to a later 
vector I’, and   D = I’ - I. 

• Since I’ > I,  D >= 0. 
(D is lexicographically greater than or equal to 0).  

N = 6; 
for (i=1; i<N; i++) 
    for (j=1; j<N; j++) 
          A[i+1,j+1] = A[i,j] * 2.0; 

09/15/2011!23! CS4961!
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Distance and Direction Vectors 

• Distance vectors: (infinitely large set)  

• Direction vectors: (realizable if 0 or 
lexicographically positive) 
  ([=,=],[=,<],[<,>], [<,=], [<.<]) 

• Common notation:   
    0    = 

+     < 
        -   > 
       +/-  * 
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Parallelization Test: 1-Dimensional Loop 

• Examples: 

  for (j=1; j<N; j++)                      for (j=1; j<N; j++)          
 A[j] = A[j] + 1;      B[j] = B[j-1] + 1; 

• Dependence (Distance) Vectors? 

• Test for parallelization: 

- A 1-d loop is parallelizable if for all data dependences   
D ε D, D = 0 
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n-Dimensional Loop Nests 

for (i=1; i<=N; i++) 

   for (j=1; j<=N; j++) 

  A[i,j] = A[i,j-1]+1; 

for (i=1; i<=N; i++) 

   for (j=1; j<=N; j++) 

  A[i,j] = A[i-1,j-1]+1; 

• Distance vectors? 
• Definition: 

D = (d1, … dn) is loop-carried at level i if di is the first 
nonzero element. 
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Test for Parallelization 
The i th loop of an n-dimensional loop is parallelizable if 

there does not exist any level i data dependences. 

The  i th loop is parallelizable if for all dependences         
D = (d1, … dn), 

either 
    (d1, … di-1) > 0 
or  
    (d1, … di) = 0 
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Back to Locality: Safety of Permutation 

• Intuition: Cannot permute two loops i and j in a loop 
nest if doing so reverses the direction of any 
dependence. 

• Loops i through j of an n-deep loop nest are fully 
permutable if for all dependences D, 

    either 
      (d1, … di-1) > 0 
 or  

             forall k, i ≤ k ≤ j, dk ≥ 0 
• Stated without proof: Within the affine domain, n-1 

inner loops of n-deep loop nest can be transformed to 
be fully permutable. 
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Simple Examples: 2-d Loop Nests 

• Distance vectors 

• Ok to permute? 

for (i= 0; i<3; i++) 
   for (j=0; j<6; j++) 

 A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=1; j<6; j++) 

A[i+1][j-1]=A[i][j]+B[j]; 
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Safety of Tiling 

• Tiling = strip-mine and permutation 
- Strip-mine does not reorder iterations 
- Permutation must be legal 
OR 
-  strip size less than dependence 
distance 
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Safety of Unroll-and-Jam 

• Unroll-and-jam = tile + unroll 
- Permutation must be legal 
OR 
-  unroll less than dependence distance 
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Unroll-and-jam = tile + unroll? 
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Unroll i tile: 
for (ii= 0; ii<4; ii+=2) 
 for (j=0; j<8; j++)  
   A[i][j] = B[j+1][i]; 
   A[i+1][j] = B[j+1][i+1]; 

Original: 
for (i=0; i<4; i++) 
 for (j=0; j<8; j++) 
  A[i][j] = B[j+1][i]; 

Tile i loop: 
for (ii=0; ii<4; ii+=2) 
 for (j=0; j<8; j++) 
   for (i=ii; i<ii+2; i++)  
      A[i][j] = B[j+1][i]; 


