
9/15/11

1

09/15/2011! CS4961!

CS4961 Parallel Programming  

Lecture 8:  
Dependences and Locality

Optimizations 

Mary Hall  
September 15, 2011 

1!

Administrative
• I will be on travel Tuesday, September 20
• Nikhil will hold lab hours to complete the

programming assignment
-  ROOM L130

09/15/2011! CS4961! 2!

Programming Assignment 1:
Due Wednesday, Sept. 21, 11:59PM
To be done on water.eng.utah.edu (you all have accounts –
passwords available if your CS account doesn’t work)

1.  Write an average of a set of numbers in OpenMP
for a problem size and data set to be provided. Use
a block data distribution.

2.  Write the same computation in Pthreads.
Report your results in a separate README file.

- What is the parallel speedup of your code? To compute
parallel speedup, you will need to time the execution of both
the sequential and parallel code, and report

 speedup = Time(seq) / Time (parallel)
-  If your code does not speed up, you will need to adjust the

parallelism granularity, the amount of work each processor
does between synchronization points.

-  Report results for two different numbers of threads.

Extra credit: Rewrite both codes using a cyclic distribution

09/15/2011! CS4961! 3!

Programming Assignment 1, cont.
• A test harness is provided in avg-test-harness.c that

provides a sequential average, validation, speedup timing
and substantial instructions on what you need to do to
complete the assignment.

• Here are the key points:
-  You’ll need to write the parallel code, and the things needed to

support that. Read the top of the file, and search for “TODO”.
-  Compile w/ OpenMP: cc –o avg-openmp –O3 –xopenmp avg-openmp.c
-  Compile w/ Pthreads:

 cc –o avg-pthreads –O3 avg-pthreads.c –lpthread
-  Run OpenMP version: ./avg-openmp > openmp.out
-  Run Pthreads version: ./avg-pthreads > pthreads.out

• Note that editing on water is somewhat primitive – I’m
using vim. Apparently, you can edit on CADE machines and
just run on water. Or you can try vim, too. 

09/15/2011! CS4961! 4!

9/15/11

2

Today’s Lecture
• Data Dependences

- How compilers reason about them
- Informal determination of parallelization safety

• Locality
- Data reuse vs. data locality
- Reordering transformations for locality

• Sources for this lecture:
- Notes on website

09/15/2011! 5!CS4961!

Data Dependence and Related Definitions

•  Definition:
Two memory accesses are involved in a data dependence if they may
refer to the same memory location and one of the references is a
write.

A data dependence can either be between two distinct program
statements or two different dynamic executions of the same program
statement.

•  Source:
•  “Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach”, Allen and Kennedy, 2002, Ch. 2.

09/15/2011! 6!CS4961!

Fundamental Theorem of Dependence

• Theorem 2.2:
- Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

09/15/2011!7! CS4961!

In this course, we consider two kinds of reordering
transformations

• Parallelization
- Computations that execute in parallel between

synchronization points are potentially reordered. Is
that reordering safe? According to our definition, it is
safe if it preserves the dependences in the code.

• Locality optimizations
- Suppose we want to modify the order in which a

computation accesses memory so that it is more likely
to be in cache. This is also a reordering
transformation, and it is safe if it preserves the
dependences in the code.

• Reduction computations
- We have to relax this rule for reductions. It is safe to reorder

reductions for commutative and associative operations.
09/15/2011! 8!CS4961!

9/15/11

3

Targets of Memory Hierarchy Optimizations

• Reduce memory latency
-  The latency of a memory access is the time (usually in cycles)

between a memory request and its completion

• Maximize memory bandwidth
-  Bandwidth is the amount of useful data that can be retrieved

over a time interval

• Manage overhead
-  Cost of performing optimization (e.g., copying) should be less

than anticipated gain

09/15/2011! CS4961! 9!

Reuse and Locality
• Consider how data is accessed

- Data reuse:
- Same or nearby data used multiple times
- Intrinsic in computation

- Data locality:
- Data is reused and is present in “fast memory”
- Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
-  Appropriate data placement and layout
-  Code reordering transformations

09/15/2011! CS4961! 10!

Exploiting Reuse: Locality optimizations
• We will study a few loop transformations that

reorder memory accesses to improve locality.
• These transformations are also useful for

parallelization too (to be discussed later).
• Two key questions:

- Safety:
- Does the transformation preserve dependences?

-  Profitability:
-  Is the transformation likely to be profitable?
- Will the gain be greater than the overheads (if any) associated

with the transformation?

09/15/2011! CS4961! 11!

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order! i

j

Permute the order of the loops to modify the traversal order

NOTE: C multi-dimensional arrays are stored in row-major order, Fortran
in column major

Loop Transformations: Loop Permutation

09/15/2011 12!CS4961!

9/15/11

4

13!

Tiling (Blocking):
Another Loop Reordering Transformation

• Blocking reorders loop iterations to bring iterations
that reuse data closer in time

• Goal is to retain in cache/register/scratchpad (or
other constrained memory structure) between
reuse

J

I

J

I

09/15/2011! CS4961! 14!

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] +B[j,i]

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j,i]

Strip
mine

for (ii=1; ii<N; ii+=s)
 for (j=1; j<M; j++)

 for (i=ii; i<min(ii+s-1,N); i++)
 D[i] = D[i] +B[j,i]

Permute

09/15/2011! CS4961!

• Unroll simply replicates the statements in a loop, with
the number of copies called the unroll factor

• As long as the copies don’t go past the iterations in
the original loop, it is always safe

- May require “cleanup” code

• Unroll-and-jam involves unrolling an outer loop and
fusing together the copies of the inner loop (not
always safe)

• One of the most effective optimizations there is, but
there is a danger in unrolling too much

Unroll, Unroll-and-Jam

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];

Unroll j
for (i=0; i<4; i++)
 for (j=0; j<8; j+=2)
 A[i][j] = B[j+1][i];
 A[i][j+1] = B[j+2][i];

Unroll-and-jam i
for (i= 0; i<4; i+=2)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];
 A[i+1][j] = B[j+1][i+1];

09/15/2011! 15!CS4961!

How does Unroll-and-Jam benefit locality?

• Temporal reuse of B in registers
• More if I loop is unrolled further

09/15/2011! CS4961! 16!

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i] + B[j+1][i+1];

Unroll-and-jam i and j loops
for (i=0; i<4; i+=2)
 for (j=0; j<8; j+=2) {
 A[i][j] = B[j+1][i] + B[j+1][i+1];
 A[i+1][j] = B[j+1][i+1] + B[j+1][i+2];
 A[i][j+1] = B[j+2][i] + B[j+2][i+1];
 A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];
}

9/15/11

5

Other advantages of Unroll-and-Jam

• Less loop control
• Independent computations for instruction-level

parallelism

09/15/2011! CS4961! 17!

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i] + B[j+1][i+1];

Unroll-and-jam i and j loops
for (i=0; i<4; i+=2)
 for (j=0; j<8; j+=2) {
 A[i][j] = B[j+1][i] + B[j+1][i+1];
 A[i+1][j] = B[j+1][i+1] + B[j+1][i+2];
 A[i][j+1] = B[j+2][i] + B[j+2][i+1];
 A[i+1][j+1] B[j+2][i+1] + B[j+2][i+2];
}

+
B

B
A

= +
B

B
A

= +
B

B
A

= +
B

B
A

=

How to determine safety of reordering
transformations

• Informally
- Must preserve relative order of dependence source and sink
- So, cannot reverse order

• Formally
- Tracking dependences
- A simple abstraction: Distance vectors

09/15/2011! CS4961! 18!

19!

Forall or Doall loops:
Loops whose iterations can execute in parallel (a particular
reordering transformation)

Example
 forall (i=1; i<=n; i++)
 A[i] = B[i] + C[i];

Meaning?

Brief Detour on Parallelizable Loops as a
Reordering Transformation

Each iteration can execute independently of others
Free to schedule iterations in any order (e.g., pragma omp forall)

Source of scalable, balanced work
Common to scientific, multimedia, graphics & other domains

09/15/2011! CS4961!

Data Dependence for Arrays

• Recognizing parallel loops (intuitively)
-  Find data dependences in loop
- No dependences crossing iteration boundary 

parallelization of loop’s iterations is safe

for (i=2; i<5; i++)
 A[i] = A[i-2]+1;

for (i=1; i<=3; i++)
 A[i] = A[i]+1;

Loop-
Carried
dependence

Loop-
Independent
dependence

09/15/2011!20! CS4961!

9/15/11

6

1. Characterize Iteration Space

•  Iteration instance: represented as coordinates in iteration space
-  n-dimensional discrete cartesian space for n deep loop nests

•  Lexicographic order: Sequential execution order of iterations
[1,1], [1,2], ..., [1,6],[1,7],
[2,2], [2,3], ..., [2,6], ...

•  Iteration I (a vector) is lexicographically less than I’, I<I’ , iff
 there exists c (i1, …, ic-1) = (i’1, …, i’c-1) and ic < i’c .

j

for (i=1;i<=5; i++)
 for (j=i;j<=7; j++)

 ...
1 ≤ i ≤ 5
i ≤ j ≤ 7

i

09/15/2011!21! CS4961!

2. Compare Memory Accesses across
Dynamic Instances in Iteration Space

N = 6;
for (i=1; i<N; i++)
 for (j=1; j<N; j++)
 A[i+1,j+1] = A[i,j] * 2.0;

i

j
How to describe relationship between two dynamic instances?

 e.g., I=[1,1] and I’=[2,2]

I=[1,1],
Write A[2,2]

I’=[2,2],
Read A[2,2]

09/15/2011!22! CS4961!

Distance Vectors

• Distance vector = [1,1]
• A loop has a distance vector D if there exists data

dependence from iteration vector I to a later
vector I’, and D = I’ - I.

• Since I’ > I, D >= 0.
(D is lexicographically greater than or equal to 0).

N = 6;
for (i=1; i<N; i++)
 for (j=1; j<N; j++)
 A[i+1,j+1] = A[i,j] * 2.0;

09/15/2011!23! CS4961!
24!

Distance and Direction Vectors

• Distance vectors: (infinitely large set)

• Direction vectors: (realizable if 0 or
lexicographically positive)
 ([=,=],[=,<],[<,>], [<,=], [<.<])

• Common notation:
 0 =

+ <
 - >
 +/- *

09/15/2011! CS4961!

9/15/11

7

25!

Parallelization Test: 1-Dimensional Loop

• Examples:

 for (j=1; j<N; j++) for (j=1; j<N; j++)
 A[j] = A[j] + 1; B[j] = B[j-1] + 1;

• Dependence (Distance) Vectors?

• Test for parallelization:

- A 1-d loop is parallelizable if for all data dependences
D ε D, D = 0

09/15/2011! CS4961! 26!

n-Dimensional Loop Nests

for (i=1; i<=N; i++)

 for (j=1; j<=N; j++)

 A[i,j] = A[i,j-1]+1;

for (i=1; i<=N; i++)

 for (j=1; j<=N; j++)

 A[i,j] = A[i-1,j-1]+1;

• Distance vectors?
• Definition:

D = (d1, … dn) is loop-carried at level i if di is the first
nonzero element.

09/15/2011! CS4961!

27!

Test for Parallelization
The i th loop of an n-dimensional loop is parallelizable if

there does not exist any level i data dependences.

The i th loop is parallelizable if for all dependences
D = (d1, … dn),

either
 (d1, … di-1) > 0
or
 (d1, … di) = 0

09/15/2011! CS4961! 28!

Back to Locality: Safety of Permutation

• Intuition: Cannot permute two loops i and j in a loop
nest if doing so reverses the direction of any
dependence.

• Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,

 either
 (d1, … di-1) > 0
 or

 forall k, i ≤ k ≤ j, dk ≥ 0
• Stated without proof: Within the affine domain, n-1

inner loops of n-deep loop nest can be transformed to
be fully permutable.

09/15/2011! CS4961!

9/15/11

8

29!

Simple Examples: 2-d Loop Nests

• Distance vectors

• Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

 A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

09/15/2011! CS4961! 30!

Safety of Tiling

• Tiling = strip-mine and permutation
- Strip-mine does not reorder iterations
- Permutation must be legal
OR
-  strip size less than dependence
distance

09/15/2011! CS4961!

31!

Safety of Unroll-and-Jam

• Unroll-and-jam = tile + unroll
- Permutation must be legal
OR
-  unroll less than dependence distance

09/15/2011! CS4961!

Unroll-and-jam = tile + unroll?

09/15/2011! CS4961! 32!

Unroll i tile:
for (ii= 0; ii<4; ii+=2)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];
 A[i+1][j] = B[j+1][i+1];

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];

Tile i loop:
for (ii=0; ii<4; ii+=2)
 for (j=0; j<8; j++)
 for (i=ii; i<ii+2; i++)
 A[i][j] = B[j+1][i];

