Notes on Data Dependences and Reordering Transformations, as a precursor to Data
Locality Transformations

CS4961

September 13, 2011

Today’s lecture is about how to determine if a reordering of a computation
preserves its meaning. We formulate the notion of preserving meaning through the
concept of a data dependence. The notion of data dependence relates to the
conditions outlined by Bernstein in 1966 for when if was safe to execute two
processes in parallel. The safety criteria focused on properties of memory accesses
(assuming memory is shared between processes), identifying any overlap in data
accessed by the two processes that would potentially cause the parallel computation
to produce an incorrect result.

Bernstein’s conditions (1966): | is the set of memory locations read by process P;j,
and Oj the set updated by process P;. To execute Pjand another process Px in

parallel,
Ij N Ox= ¢
kNOj=¢
Oj N Ox= ¢

Observe that there is one condition missing here, among the 4 possible
combinations of the input and output of P; and P;. The inputs can be overlapping,
and it is safe, since neither’s memory state is being modified.

Now the related definition of a data dependence.
* Data Dependence: Two memory accesses are involved in a data dependence
if they may refer to the same memory location and one of the accesses is a
write.

Load-store classification:
Expressed in terms of load-store order in the sequential program, we now provide
some definitions of different types of dependences on memory accesses to the same
location.

1. True dependence (read after write): The first access stores into a location

that is later read by the second access. X=..;..=X;
2. Anti-dependence (write after read): The first access reads from a location
into which the second access later stores. .. =X; X=...;

3. Output dependence (write after write): Both accesses write to a location, and
the ordering of the writes must be preserved so that any later accesses read
the correct value. X=..;X=..;

This classification is taken from the parallelizing compiler literature. So the role of a
compiler is to analyze memory accesses to pinpoint the dependences and determine
whether parallelization is safe. Compilers must be conservative in deciding whether
two accesses are to the same memory location. Compilers also perform other

reordering transformations on the code to make parallelization safe or more efficient



(e.g., have coarser granularity). Now we will look at a few definitions to understand
how compilers reason about parallelization and other reordering transformations.

A data dependence can either be between two distinct program statements or two
different dynamic executions of the same program statement. Much of the
parallelizing compiler literature focuses on dependence analysis of loop nest
computations, as loops offer ready sources of balanced and scalable parallel
computations. As we will discuss in the next lecture, dependence analysis can be
formulated on iteration instances in the iteration space of a multi-dimensional loop
nest. Here are a few definitions that help formalize how parallelizing compilers
reason about the safety of parallelization.

* Definition 2.5 (equivalence of computations): Two computations are
equivalent if, on the same inputs, they produce identical outputs and the
outputs are executed in the same order.

* Definition 2.6 (reordering transformation): A reordering transformation
changes the order of statement execution without adding or deleting any
statement executions.

* Definition 2.7 (preserving dependences): A reordering transformation
preserves a dependence if it preserves the relative execution order of the
dependences’ source and sink.

* Fundamental Theorem of Dependence: any reordering transformation
that preserves every dependence in a program preserves the meaning of that
program and is a valid transformation.

Reduction computations

In the absence of synchronization, parallelizing the pairwise sum and count 3s
examples, as in the textbook, actually violates the notion of a valid transformation,
since there is an inherent dependence on the variable that accumulates the final
result. However, these computations can be parallelized because they are
reductions.

Definition: A reduction computation computes a result that represents a reduction
in the dimensionality of the input data. A reduction computation exhibits data
dependences, but if the operation on the input data is associative, it is safe to reorder
the operations and execute them in parallel. A reduction computation has the
structure, “result = result op ...” Operation op must be associative.

References
Bernstein, A. J. (October 1966). "Program Analysis for Parallel Processing,' [EEE
Trans. on Electronic Computers". EC-15, pp. 757-62.

Optimizing Compilers for Modern Architectures: A Dependence-Based Approach, Allen
and Kennedy, 2002, Ch. 2.

For next time, we will look at a more formal definition of dependences, and work
through a set of reordering transformations.



