
9/9/10 

1 

09/09/2010
 CS4961


CS4961 Parallel Programming 

Lecture 6:  
Data Parallelism in OpenMP, cont. 

Introduction to Data Parallel 
Algorithms 

Mary Hall 
September 9, 2010  

Homework 2, Due Friday, Sept. 10, 11:59 PM 
• To submit your homework: 

- Submit a PDF file 
- Use the “handin” program on :  
-   “handin cs4961 hw2 <prob2file>” the CADE machines   
- Use the following command 

Problem 1 (based on #1 in text on p. 59): 
Consider the Try2 algorithm for “count3s” from Figure 1.9 of 
p.19 of the text.  Assume you have an input array of 1024 
elements, 4 threads, and that the input data is evenly split 
among the four processors so that accesses to the input array 
are local and have unit cost.  Assume there is an even 
distribution of appearances of 3 in the elements assigned to 
each thread which is a constant we call NTPT.   What is a 
bound for the memory cost for a particular thread predicted 
by the CTA expressed in terms of λ and NTPT.  

09/09/2010
 CS4961


Homework 2, cont 
Problem 2 (based on #2 in text on p. 59), cont.:    

Now provide a bound for the memory cost for a particular 
thread predicted by CTA for the Try4 algorithm of Fig. 114 on 
p. 23 (or Try3 assuming each element is placed on a separate 
cache line).    

Problem 3: 
For these examples, how is algorithm selection impacted by the 
value of NTPT? 

Problem 4 (in general, not specific to this problem): 
 How is algorithm selection impacted by the value of λ?   

09/09/2010
 CS4961


Preview of Programming Assignment 1   
• Write the prefix sum computation from HW1 in 

OpenMP for a problem size and data set to be 
provided.  Report your results in a separate README 
file. 

- What is the parallel speedup of your code?  To compute 
parallel speedup, you will need to time the execution of both 
the sequential and parallel code, and report  

 speedup = Time(seq) / Time (parallel) 
-  If your code does not speed up, you will need to adjust the 

parallelism granularity, the amount of work each processor 
does between synchronization points. 

-  If possible, you should try different mappings to processors 
to find a version that achieves the best speedup.   

- What is the scheduling strategy you used to get the best 
speedup? 

09/09/2010
 CS4961




9/9/10 

2 

Today’s Lecture 

• Data Parallelism in OpenMP 
-  Expressing Parallel Loops 
-  Parallel Regions (SPMD) 
- Scheduling Loops 
- Synchronization 

• Sources of material: 
- Jim Demmel and Kathy Yelick, UCB 
- Allan Snavely, SDSC 
-  Larry Snyder, Univ. of Washington 
-  https://computing.llnl.gov/tutorials/openMP/ 

09/09/2010
 CS4961


Programming with Threads 
Several Thread Libraries 
• PTHREADS is the Posix Standard [IEEE std, 
1995] 

- Solaris threads are very similar 
- Relatively low level 
- Portable but possibly slow 

• OpenMP is newer standard [1997] 
- Support for scientific programming on shared memory 

architectures 

• P4 (Parmacs) is another portable package [1987] 
- Higher level than Pthreads 
- http://www.netlib.org/p4/index.html 

09/09/2010
 CS4961


A Programmer’s View of OpenMP 
• OpenMP is a portable, threaded, shared-memory 

programming specification with “light” syntax 
-  Exact behavior depends on OpenMP implementation! 
-  Requires compiler support (C/C++ or Fortran) 

• OpenMP will: 
- Allow a programmer to separate a program into serial regions 

and parallel regions, rather than concurrently-executing 
threads. 

- Hide stack management 
-  Provide synchronization constructs 

• OpenMP will not: 
-  Parallelize automatically 
- Guarantee speedup 
-  Provide freedom from data races 

09/09/2010
 CS4961


Programming Model – Data Sharing 
•  Parallel programs often employ 

two types of data 
-  Shared data, visible to all 

threads, similarly named 
-  Private data, visible to a single 

thread (often stack-allocated) 

•  OpenMP: 
•  shared variables are shared 
•  private variables are private 
•  Default is shared 
•  Loop index is private 

•  PThreads: 
•  Global-scoped variables are 

shared 
•  Stack-allocated variables are 

private 

// shared, globals 

int bigdata[1024]; 

void* foo(void* bar) { 

  // private, stack 

  int tid; 

  /* Calculation goes 

     here */ 

} 

int bigdata[1024]; 

void* foo(void* bar) { 

  int tid; 

  #pragma omp parallel \ 

   shared ( bigdata ) \ 

   private ( tid ) 

  { 

    /* Calc. here */ 

  }  

} 



9/9/10 

3 

OpenMP Data Parallel Construct: Parallel Loop 
• All pragmas begin: #pragma  
• Compiler calculates loop bounds for each thread 

directly from serial source (computation decomposition) 
• Compiler also manages data partitioning of Res 
• Synchronization also automatic (barrier) 

09/09/2010
 CS4961


OpenMP Execution Model 

•  Fork-join model of parallel execution 

•  Begin execution as a single process (master thread) 

•  Start of a parallel construct: 
-  Master thread creates team of threads 

•  Completion of a parallel construct: 
-  Threads in the team synchronize -- implicit barrier 

•  Only master thread continues execution 

•  Implementation optimization:  
-  Worker threads spin waiting on next fork 

fork 

join 

09/09/2010
 CS4961


OpenMP Execution Model 

09/09/2010
 CS4961


OpenMP directive format C  
(also Fortran and C++ bindings) 

• Pragmas, format 

#pragma omp directive_name [ clause [ clause ] ... ] new-
line 

•  Conditional compilation 


#ifdef _OPENMP

block, 
e.g., printf(“%d avail.processors\n”,omp_get_num_procs());



#endif 

•  Case sensitive 

•  Include file for library routines 


#ifdef _OPENMP



#include <omp.h>



#endif


09/09/2010
 CS4961




9/9/10 

4 

Limitations and Semantics 
• Not all “element-wise” loops can be ||ized  

     #pragma omp parallel for  
       for (i=0; i < numPixels; i++) {} 

-  Loop index: signed integer  
- Termination Test: <,<=,>,=> with loop invariant int  
-  Incr/Decr by loop invariant int; change each iteration 
-  Count up for <,<=; count down for >,>=  
-  Basic block body: no control in/out except at top  

• Threads are created and iterations divvied up; 
requirements ensure iteration count is predictable  

09/09/2010
 CS4961


OpenMP Synchronization 
• Implicit barrier 

- At beginning and end of parallel constructs 
- At end of all other control constructs 
-  Implicit synchronization can be removed with nowait 

clause 

• Explicit synchronization 
- critical

- atomic (single statement)

- barrier  

09/09/2010
 CS4961


OpenMp Reductions 
• OpenMP has reduce operation 
sum = 0;  
#pragma omp parallel for reduction(+:sum)       
for (i=0; i < 100; i++)     {          
sum += array[i];  
} 

• Reduce ops and init() values (C and C++):  
+   0         bitwise  &  ~0      logical &   1  
-   0         bitwise  |   0      logical |   0  
*   1         bitwise  ^   0 
 FORTRAN also supports min and max reductions 

09/09/2010
 CS4961


Programming Model – Loop Scheduling 
• schedule clause determines how loop iterations are 

divided among the thread team 
- static([chunk]) divides iterations statically between 

threads 
-  Each thread receives [chunk] iterations, rounding as 

necessary to account for all iterations 
- Default [chunk] is ceil( # iterations / # threads ) 

- dynamic([chunk]) allocates [chunk] iterations per 
thread, allocating an additional [chunk] iterations when a 
thread finishes 

-  Forms a logical work queue, consisting of all loop iterations  
- Default [chunk] is 1 

- guided([chunk]) allocates dynamically, but [chunk] is 
exponentially reduced with each allocation 

09/09/2010
 CS4961




9/9/10 

5 

Loop scheduling 

2 (2) 

09/09/2010
 CS4961


More loop scheduling attributes 
• RUNTIME The scheduling decision is deferred until 

runtime by the environment variable 
OMP_SCHEDULE. It is illegal to specify a chunk size 
for this clause.  

• AUTO The scheduling decision is delegated to the 
compiler and/or runtime system.  

• NO WAIT / nowait: If specified, then threads do 
not synchronize at the end of the parallel loop.  

• ORDERED: Specifies that the iterations of the loop 
must be executed as they would be in a serial 
program.  

• COLLAPSE: Specifies how many loops in a nested loop 
should be collapsed into one large iteration space and 
divided according to the schedule clause. The 
sequential execution of the iterations in all 
associated loops determines the order of the 
iterations in the collapsed iteration space.  

09/09/2010
 CS4961


Impact of Scheduling Decision 
• Load balance 

- Same work in each iteration? 
-  Processors working at same speed? 

• Scheduling overhead 
- Static decisions are cheap because they require no run-time 

coordination 
- Dynamic decisions have overhead that is impacted by 

complexity and frequency of decisions 

• Data locality 
-  Particularly within cache lines for small chunk sizes 
- Also impacts data reuse on same processor 

09/09/2010
 CS4961


A Few Words About Data Distribution (Ch. 5) 
• Data distribution describes how global data is 

partitioned across processors. 
-  Recall the CTA model and the notion that a portion of the 

global address space is physically co-located with each 
processor    

• This data partitioning is implicit in OpenMP and may 
not match loop iteration scheduling 

• Compiler will try to do the right thing with static 
scheduling specifications 

09/09/2010
 CS4961




9/9/10 

6 

Common Data Distributions 
• Consider a 1-Dimensional array to solve the count3s 

problem, 16 elements, 4 threads 
CYCLIC (chunk = 1):         
     for (i = 0; i<blocksize; i++) 
   … in [i*blocksize + tid]; 

BLOCK (chunk = 4):  
    for (i=tid*blocksize; i<(tid+1) *blocksize; i++)   
       … in[i]; 

BLOCK-CYCLIC (chunk = 2): 

CS4961


3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2 

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2 

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2 

09/09/2010


OpenMP critical directive 
• Enclosed code 

– executed by all threads, but 

– restricted to only one thread at a time 
#pragma omp critical [ ( name ) ] new-line 

    structured-block 

• A thread waits at the beginning of a critical region until no 
other thread in the team is executing a critical region with 
the same name. 

• All unnamed critical directives map to the same 
unspecified name. 

09/09/2010
 CS4961


Variation: OpenMP parallel and for directives 
Syntax: 

   #pragma omp for [ clause [ clause ] ... ] new-line 

  for-loop 

clause can be one of the following: 
 shared (list)


 private( list) 

 reduction( operator: list) 
 schedule( type [ , chunk ] )

 nowait (C/C++: on #pragma omp for) 

#pragma omp parallel private(f) { 
 f=7; 

#pragma omp for 
  for (i=0; i<20; i++) 
  a[i] = b[i] + f * (i+1); 

} /* omp end parallel */ 

09/09/2010
 CS4961


OpenMP parallel region construct 
• Block of code to be executed by multiple threads in 

parallel 
• Each thread executes the same code redundantly 

(SPMD) 
- Work within work-sharing constructs is distributed among 

the threads in a team 

• Example with C/C++ syntax 

#pragma omp parallel [ clause [ clause ] ... ] new-line 
  structured-block 

•  clause can include the following: 
private (list) 
shared (list) 

09/09/2010
 CS4961




9/9/10 

7 

OpenMP environment variables 
OMP_NUM_THREADS


  sets the number of threads to use during execution 
 when dynamic adjustment of the number of threads is enabled, the 

value of this environment variable is the maximum number of 
threads to use 

  For example,  
 
setenv OMP_NUM_THREADS 16 [csh, tcsh] 
 
export OMP_NUM_THREADS=16 [sh, ksh, bash] 
OMP_SCHEDULE


  applies only to do/for and parallel do/for directives that 
have the schedule type RUNTIME


  sets schedule type and chunk size for all such loops 
  For example, 
 
setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh] 
 
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

09/09/2010
 CS4961


OpenMP runtime library, Query Functions 
omp_get_num_threads: 

Returns the number of threads currently in the team executing the 
parallel region from which it is called 

int omp_get_num_threads(void);


omp_get_thread_num: 

Returns the thread number, within the team, that lies between 0 and 
omp_get_num_threads()-1, inclusive. The master thread of the 
team is thread 0


int omp_get_thread_num(void);


09/09/2010
 CS4961


09/09/2010
 CS4961


Summary of Lecture 
• OpenMP, data-parallel constructs only 

- Task-parallel constructs later 

• What’s good? 
- Small changes are required to produce a parallel program from 

sequential (parallel formulation) 
- Avoid having to express low-level mapping details 
-  Portable and scalable, correct on 1 processor 

• What is missing? 
- Not completely natural if want to write a parallel code from 

scratch 
- Not always possible to express certain common parallel 

constructs 
-  Locality management 
-  Control of performance 


