CS4961 Parallel Programming

Lecture 6:
Data Parallelism in OpenMP, cont.
Introduction to Data Parallel
Algorithms

Mary Hall
September 9, 2010

09/09/2010 Cs4961

Homework 2, Due Friday, Sept. 10, 11:59 PM

* To submit your homework:
- Submit a PDF file
- Use the "handin” program on :
- “handin cs4961 hw2 <prob2file>" the CADE machines
- Use the following command

Problem 1 (based on #1 in text on p. 59):

Consider the Try2 algorithm for “count3s" from Figure 1.9 of
p.19 of the text. Assume you have an input array of 1024
elements, 4 threads, and that the input data is evenly split
among the four processors so that accesses to the input array
are local and have unit cost. Assume there is an even
distribution of appearances of 3 in the elements assigned to
each thread which is a constant we call NTPT. What is a
bound for the memory cost for a particular thread predicted
by the CTA expressed in terms of 1 and NTPT.

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

Homework 2, cont
Problem 2 (based on #2 in text on p. 59), cont.:

Now provide a bound for the memory cost for a particular
thread predicted by CTA for the Try4 algorithm of Fig. 114 on
p. 23 (or Try3 assuming each element is placed on a separate
cache line).

Problem 3:

For these examples, how is algorithm selection impacted by the
value of NTPT?

Problem 4 (in general, not specific to this problem):

How is algorithm selection impacted by the value of A2

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

Preview of Programming Assignment 1

* Write the prefix sum computation from HW1 in
OpenMP for a problem size and data set to be
rlovuded‘ Report your results in a separate README
ile.

- What is the parallel speedup of your code? To compute
parallel speedup, you will need to time the execution of both
the sequential and parallel code, and report

speedup = Time(seq) / Time (parallel)

- If your code does not speed up, you will need to adjust the
parallelism granularity, the amount of work each processor
does between synchronization points.

- If possible, you should try different mappings to processors
to find a version that achieves the best speedup.

- What is the scheduling strategy you used to get the best
speedup?

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

9/9/10

Today's Lecture

+ Data Parallelism in OpenMP
- Expressing Parallel Loops
- Parallel Regions (SPMD)
- Scheduling Loops
- Synchronization

+ Sources of material:
- Jim Demmel and Kathy Yelick, UCB
- Allan Snavely, SDSC
- Larry Snyder, Univ. of Washington
- https://computing.linl.gov/tutorials/openMP/

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

p . ith Tt (<

Several Thread Libraries

- PTHREADS is the Posix Standard [IEEE std,
1995]

- Solaris threads are very similar
- Relatively low level
- Portable but possibly slow

* OpenMP is newer standard [1997]
- Support for scientific programming on shared memory
architectures
* P4 (Parmacs) is another portable package [1987]
- Higher level than Pthreads
- http://www.netlib.org/p4/index.html

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

A Programmer'’s View of OpenMP

+ OpenMP is a portable, threaded, shared-memory
programming specification with “light" syntax

- Exact behavior depends on OpenMP implementation!

- Requires compiler support (C/C++ or Fortran)

+ OpenMP will:

- Allow a programmer to separate a program into serial regions
and parallel regions, rather than concurrently-executing
threads.

- Hide stack management

- Provide synchronization constructs

+ OpenMP will not:

- Parallelize automatically

- Guarantee speedup

- Provide freedom from data races

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

+ Parallel programs often employ

Programming Model - Data Sharing

two types 0% data // shared, globals

- Shared data, visible to all int bigdata[1024];
threads, similarly named

- Private data, visible to a single .)
thread (often stack-allocated) veoid* foo(void* bar) {

int tid;

PThreads:
+ Global-scoped variables are

shared #pragma omp parallel \
* Stack-allocated variables are shared (bigdata) \

private

rivate (tid)

OpenMP: P
+ shared variables are shared {
+ private variables are private /* Calc. here */
- Default is shared }

+ Loop index is private

THE
u UNIVERSITY
OF UTAH

9/9/10

OpenMP Data Parallel Construct: Parallel Loop

+ All pragmas begin: #pragma

+ Compiler calculates loop bounds for each thread
directly from serial source (computation decomposition)

+ Compiler also manages data partitioning of Res
+ Synchronization also automatic (barrier)

Serial Program: Parallel Program:

void main() void main()
{
double Res[1000]; double Res[1000];
#pragma omp parallel for
for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);
} }

} }

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

OpenMP Execution Model

+ Fork-join model of parallel execution
+ Begin execution as a single process (master thread)

+ Start of a parallel construct:
- Master thread creates team of threads

+ Completion of a parallel construct:
- Threads in the feam synchronize -- implicit barrier

* Only master thread continues execution

+ Implementation optimization: ?
- Worker threads spin waiting on next fork fork

09/09/2010 CS4961

THE
? O O O UUN[VERSITY
OF UTAH

OpenMP_Execution Model

Sequential Part
Parallel Region Team of Threads
Sequential Part Master Thread
Parallel Region Team of Threads

Sequential Part Master Thread

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

OpenMP directive format C
(also Fortran and C++ bindings)

* Pragmas, format

#pragma omp directive_name [clause [clause] ...] new-
line

« Conditional compilation
#ifdef _OPENMP
block,
e.g., printf(“%d avail.processors\n”,omp_get_num procs());
#endif
« Case sensitive
« Include file for library routines
#ifdef _OPENMP

#include <omp.h>

#endif
THE 5
UNIVERSITY
09/09/2010 Cs4961 u OF UTAH

9/9/10

Limitations and Semantics

- Not all “element-wise" loops can be ||ized

#pragma omp parallel for
for (i=0; i < numPixels; i++) {}

- Loop index: signed integer

- Termination Test: <<= > => with loop invariant int

- Incr/Decr by loop invariant int; change each iteration
- Count up for <<=; count down for >5>=

- Basic block body: no control in/out except at top

* Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

OpenMP_Synchronization

* Implicit barrier
- At beginning and end of parallel constructs
- At end of all other control constructs
- Implicit synchronization can be removed with nowait
clause
+ Explicit synchronization
-critical
-atomic (single statement)

-barrier

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

OpenMp Reductions

+ OpenMP has reduce operation

sum = 0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) {

sum += arrayl[i];

}

+ Reduce ops and init() values (C and C++):
+ 0 bitwise & ~0
-0 bitwise | 0
* 1 bitwise ©~ 0
FORTRAN also supports min and max reductions

THE
u UNIVERSITY
OF UTAH

logical & 1
logical | O

09/09/2010 CS4961

Programming Model - Loop Scheduling

* schedule clause determines how loop iterations are
divided among the thread team

-static([chunk]) divides iterations statically between
threads

- Each thread receives [chunk] iterations, rounding as
necessary to account for all iterations

- Default [chunk] iS ceil(# iterations / # threads)
-dynamic ([chunk]) allocates [chunk] iterations per

thread, allocating an additional [chunk] iterations when a
thread finishes

- Forms a logical work queue, consisting of all loop iterations
- Default [chunk] is 1

-guided ([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

THE
u UNIVERSITY
OF UTAH

09/09/2010 CS4961

9/9/10

Loop scheduling
static dynamic(3) guided(1)

= = = = (2)

= = = m|

= = = [

m| (=) = =

= = =]

= = = =

= = = m|

= = —_ (5]

[) — —_ =

= =) = (=]

= = = =

m| (=) =] a
UNIVERSITY

09/09/2010 CS4961 u UNI I

OF UTAH

More loop scheduling attributes

* RUNTIME The scheduling decision is deferred until
runtime by the environment variable)
OMP_SCHEDULE. It is illegal to specify a chunk size
for this clause.

+ AUTO The scheduling decision is delegated to the
compiler and/or runtime system.

+ NO WAIT / nowait: If specified, then threads do
not synchronize at the end of the parallel loop.

- ORDERED: Specifies that the iterations of Tlhe loop

must be executed as they would be in a seria
program.

+ COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one lar%e iteration space and
divided according to the schedule clause. The
sequential execution of the iterations in all
associated Ioogs determines the order of the

iterations in the collapsed iteration space.
09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

Impact of Scheduling Decision

+ Load balance
- Same work in each iteration?
- Processors working at same speed?

+ Scheduling overhead

- Static decisions are cheap because they require no run-time
coordination

- Dynamic decisions have overhead that is impacted by
complexity and frequency of decisions
+ Data locality
- Particularly within cache lines for small chunk sizes
- Also impacts data reuse on same processor

THE
u UNIVERSITY
OF UTAH

09/09/2010 CS4961

A_Few Words About Data Distribution (Ch. 5)

+ Data distribution describes how global data is
partitioned across processors.
- Recall the CTA model and the notion that a portion of the
global address space is physically co-located with each
processor

* This data parﬂtionin}g is implicit in OpenMP and may
not matchloop iterafion scheduling

+ Compiler will try to do the right thing with static
scheduling specifications

THE
u UNIVERSITY
OF UTAH

09/09/2010 CS4961

9/9/10

Common Data Distributions

+ Consider a 1-Dimensional array to solve the count3s
problem, 16 elements, 4 threads
CYCLIC (chunk = 1):
for (i = 0; i<blocksize; i++)
... in [i*blocksize + tid];

00606000000 00000

BLOCK (chunk = 4):
for (i=tid*blocksize; i«(tid+1) *blocksize; i++)
.in[il;

0000680000 0000000

BLOCK-CYCLIC (chunk = 2):
00000 000

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

OpenMP critical directive
+ Enclosed code

- executed by all threads, but

- restricted to only one thread at a time
#pragma omp critical [(name)]new-line

structured-block

+ A thread waits at the beginning of a critical region until no
other thread in the team is executing a critical region with
the same name.

+ All unnamed critical directives map to the same
unspecified name.

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

Variation: OpenMP parallel and for directives

Syntax:

#pragma omp for [clause [clause]...] new-line
for-loop
clause can be one of the following:
shared (list)
private(list)
reduction(operator: list)
schedule(type [, chunk])
nowait (C/C++:on#pragma omp for)
#pragma omp parallel private(f) {
f=7;
#pragma omp for
for (i=0; i<20; i++)
afi] = b[i] + f* (i+1);
}/* omp end parallel */

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

OpenMP parallel region construct

* Block of code to be executed by multiple threads in
parallel

» Each thread executes the same code redundantly
PMD)
- Work within work-sharing constructs is distributed among
the threads in a team

» Example with C/C++ syntax
#pragma omp parallel [clause[clause]...]new-line
structured-block
« clause can include the following:
private (list)
shared (list)

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

9/9/10

OpenMP _environment variables

OMP_NUM_THREADS
= sets the number of threads to use during execution

= when dynamic adjustment of the number of threads is enabled, the
value of this environment variable is the maximum number of
threads to use

= For example,
setenv OMP_NUM THREADS 16 [csh, tcsh]
export OMP_NUM THREADS=16 [sh, ksh, bash]
OMP_SCHEDULE

= applies only to do/for and parallel do/for directives that
have the schedule type RUNTIME

= sets schedule type and chunk size for all such loops

= For example,
setenv OMP_SCHEDULE GUIDED, 4 [csh, tcsh]
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

THE
09/09/2010 CS4961 u lCJ)N IVERSITY

F UTAH

OpenMP _runtime library, Query Functions
omp_get_num_threads:

Returns the number of threads currently in the team executing the
parallel region from which it is called

int omp_get_ num_threads(void);

omp_get_thread num:

Returns the thread number, within the team, that lies between 0 and
omp_get_num_threads()-1, inclusive. The master thread of the
team is thread 0

int omp get thread num(void);

THE
09/09/2010 CS4961 u UNIVERSITY
OF UTAH

Summary of Lecture

+ OpenMP, data-parallel constructs only
- Task-parallel constructs later
* What's good?

- Small changes are required to produce a parallel program from
sequential (parallel formulation)

- Avoid having to express low-level mapping details
- Portable and scalable, correct on 1 processor

* What is missing?

- Not completely natural if want to write a parallel code from
scratch

- Not always possible to express certain common parallel
constructs

- Locality management
- Control of performance

09/09/2010 CS4961

THE
u UNIVERSITY
OF UTAH

9/9/10

